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ELMS--Enclosed Loop Micro-Sequencer for the Fermilab Beam Loss Monitor System 

Jinyuan Wu, Craig Drennan, Alan Baumbaugh and Jonathan Lewis
Abstract— Most of program loops in micro-processors are implemented with conditional branches that are the origin of many micro-complexities like branch prediction.  Intrinsically, loops with pre-defined iterations need not use conditional branches.  The Enclosed Loop Micro-Sequencer (ELMS) supports the “FOR” loops with constant iterations at the machine code level, which provides programming convenience and avoids micro-complexities from the beginning.  Another design goal of ELMS is to be compact so that it can be easily embedded into FPGA devices.  Low resource consumption is achieved by separating program flow control functions from the data processing functions (i.e., the arithmetic logic unit (ALU) in most micro-processors).  The ELMS is able to run multi-layer nested-loop programs without help from external arithmetic/logic resources used for data processing.  Since the data processing resources are external and purely user defined, the ELMS is not a traditional micro-processor, which is why it is called a “micro-sequencer”.  The ELMS is used in the digitizer FPGA for the Fermilab Beam Loss Monitor system with expected performances.
Index Terms—Embedded System, Micro-processor, Micro-sequencer, FPGA, IP core.
I. INTRODUCTION
F
PGA computing has been broadly used in high-energy/nuclear physics experiments.  Inside an FPGA, there are two primary portions: (1) data processing resources that are flexibly defined by the users and usually are application specific and (2) the sequence control of the data processing resources.
Sequence control is normally implemented using either finite state machines (FSM) or embedded micro-processor cores.  When an input data item is to be fed through a fast and very simple process, typically using a few clock cycles, FSM is a suitable means of sequence control.  FSM also responds to external conditions promptly and accurately.  However, the sequence or program in the FSM is not easy to change and debug, especially when irregularities exist in the sequence.  Also, the state machines occupy logic elements no matter how rarely they are used.  So it is not economical to use FSM to implement the occasionally-used sequences such as initialization, communication channel establishment, etc.
Embedded micro-processor is another option of sequence control.  Today’s main stream micro-processors are ALU (Arithmetic Logic Unit) oriented.  The ALU, being the center piece of the micro-processor, performs not only data processing, but also program control functions.  The ALU oriented architectures have two drawbacks in FPGA computation.  (1) When a micro-processor core is embedded in an FPGA, the ALU occupies large amount of silicon resources.  In instances where the application specific data processing is implemented in dedicated logic for the sake of speed, the ALU is barely utilized.  (2) The program loops are implemented using conditional branches, which are the primary source of the micro-complexities of pipeline bubble, branch penalty etc. that need to be solved with further micro-complexities such as branch prediction[1].  The micro-processor is a better choice only if a data item is to be processed with a very complicate program, typically using thousands of clock cycles.
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When a data item is to be processed with a medium length program, e.g., using a few hundreds clock cycles, the sequence control needed is not too much more than a PC+ROM structure (Fig. 1, left), which is the starting point of the Enclosed Loop Micro-Sequencer (ELMS) (Fig. 1, right).  The primary difference between the ELMS and regular micro-processor is that in the ELMS there are no data processing resources like an ALU.  The control signals for external data processing resources are turned on and off according to the sequence stored in the ROM as the program counter (PC) increases.  Obviously, supporting logic must be added to control the PC.  In addition to the conditional branch logic that also exists in micro-processors, loop and return logic with an internal stack are added in the ELMS, so that it supports “FOR” loops with constant iterations at the machine code level and is self-sufficient to run multi-layer nested-loop programs.
II. The Fermilab Beam Loss Monitor System
A. Overview
The new Fermilab Beam Loss Monitor (BLM) readout system [2] is designed to perform several tasks: to provide a flexible and reliable abort system to protect Tevatron magnets; to provide loss monitor data during normal operations of the Tevatron, Main Injector and Booster; and to provide detailed diagnostic loss histories when an abort happens.  Beam losses are detected using ion chambers.

The inputs from ion chambers are integrated for a short period of time, typically 21 µs, and digitized to 16 bits. The digital data are used to construct several numbers, i.e., fast, slow and very-slow sliding sums, which are a measure of the integrated loss over a variety of time scales up to 64k cycles.  The abort request signals for each channel are made in firmware by comparing these sums as well as immediate measurement with thresholds.  The system abort signal is made by checking number of channels and types of abort request signals.
For the Main Injector BLM system, an integration sum for each channel is accumulated.  The integrations substitute the very-slow sliding sums when comparing with the thresholds.

B. The Digitizer Card
A Digitizer Card (DC) integrates, digitizes and processes 4 channels of ion channel inputs.  The block diagram for the FPGA calculating the sliding sums is shown in Fig. 2.
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A total of 16 sliding sums are to be kept in the FPGA.  If all sums were kept using accumulators, the FPGA would easily consume several thousand logic elements, out of 5980 logic elements in the Altera Cyclone EP1C6 device we use.

On the other hand, during 21 µs period, there are more than 1000 clock cycles at 50 MHz inside the FPGA.  Clearly it is more economical to calculate 16 sliding sums sequentially using one set of data processing resources.  The control signals shown in Fig. 2 are turned on and off to perform various functions by the “Seq128” block with an ELMS block inside.
For the Main Injector BLM system, integrations must be computed.  In order to compute the integrations properly, the pedestal for each channel is first calculated.  At the beginning of each beam extraction when there is no beam, about 1024 ADC values for each channel are accumulated as pedestal.
The very-slow sliding sum for each channel with sum length of about 64 now represents a smoothed version of the input.  For each measurement, the pedestal is subtracted from the very-slow sliding sum with appropriate scaling and the difference can be optionally compared with a user-defined value called “squelch level”.  The difference is bigger than the squelch level, the input signal is considered bigger than noise and then it is accumulated into the integration sum.  Else, the input signal is considered below the noise level and the integration sum is kept unchanged.
The detailed discussion is beyond scope of this document.  The reader may ignore excessive information shown in Fig. 2.  We would only like to point out that operation sequence in the digitizer card FPGA contains both sufficient repeating and irregularity so that a micro-sequencer becomes a suitable choice for sequence control. 

III. The Enclosed Loop Micro-Sequencer
A. Description:
Detailed block diagram of the ELMS is shown in Fig 3.  The program is stored in a 36-bit x 128-word ROM in our example.  Clearly the instruction width and memory depth can be flexibly chosen for different applications if it is necessary.  Also, ROM’s in FPGA are typically implemented with dual-port random access memories (RAM’s), which allows the users to overwrite its contents so that new programs can be loaded.  However, if the program is not to be changed during operation, a block memory organized as a ROM with program pre-stored is more convenient.
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Both unconditional and conditional branches are supported as in regular micro-processors.  We have used non-pipelined branch logics in our example for simplicity.
The Loop & Return Registers (LRR) along with a 128-word stack are the primary elements designed to support the constant iteration “FOR” loops.
Some ELMS instructions are shown in Table I.
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The ELMS instructions are 36-bit words.  When any of the bits 32-35 is set, the word represents a program control instruction.  Otherwise, it is treated as a user instruction.
B. The Branch Instructions

The unconditional branch instruction JMP is implemented as in typical micro-processors.  When bit 35 is set, bit field desA (Only lower 7 bits are used in our example.) is selected as the PC for next clock cycle.

The conditional branch instruction JMPIF is signified when bit 32 is set.  An input line CondJMP is supplied from external user logic as branch condition, i.e., the PC jumps to desA only when CondJMP is high.  The branch condition in the ELMS is treated as a result from the external data processing resources.  It is the users’ responsibility to generate this signal and assure that it is valid when reaching the conditional branch instruction.  This design arrangement allows us to avoid using an ALU in the sequencer.
In the non-pipelined design, the branch logic is the most latency critical part.  When a JMP or JMPIF instruction presents at the output of the ROM, the signals must flow through several layers of multiplexers, arriving the address registers of the ROM with sufficient setup time.  We have been able to compile the non-pipelined design in Altera Cyclone FPGA device EP1C6Q240C6 [3] with 153 MHz maximum operating frequency.  

To increase operating frequency, pipelined design can be used, i.e., assigning registers on both input and output ports of the ROM.  We have compiled pipelined version in same device with 250 MHz.  However, a pipeline bubble (no-op instruction) or out-of-order time slot must be added after the JMP or JMPIF instructions.

In our application, the clock inside FPGA is 50 MHz.  That’s why we chose non-pipelined design in our example. 
The branch instructions are to be used only when it is necessary.  

C. The FOR Instruction
Supporting constant iteration FOR loops at machine code level is a special feature of the ELMS.

When bit 33 is set, the instruction starts a FOR loop in which the bit fields BckA, EndA and cnt are pushed into corresponding LRR/stack.  The PC is incremented until reaching EndA, and then it is set back to BckA.  This continues for (cnt+1) passes.  Then the stack is popped on the last pass of the loop.

A program segment with FOR loop may look like the following:





FOR   BckA1   EndA1    5





Initialization Processes

BckA1






Repeating Processes

EndA1

After the FOR instruction, the instructions before PC = BckA1 are executed once, essentially serving as initialization.  Then the instructions between PC = BckA1 and EndA1 (inclusive) are executed (cnt+1) or 6 times in this example.  Note that there is no conditional branch instruction at EndA1.  The ELMS conducts the loop sequence by itself.
Another interesting point is that the LRR + stack structure appears like a Branch Target Buffer (BTB) in advanced micro-processors [4].  Indeed, the LRR + stack stores information of the targets to be branched to.  However, the PC jumps in ELMS are pre-defined by the FOR instruction and are not base on predictions.  The sequencing performance of the ELMS is deterministic rather than statistic. 
D. The CALL and RTN Instructions
The CALL instruction is implemented as a combination of the FOR and JMP instructions with cnt automatically set =1.  At the CALL instruction, the PC jumps to desA while BckA and EndA are pushed into the LRR/stack.  When PC reaches EndA or when a RTN instruction is seen, the PC jumps back to BckA and the stack is popped.  Note that in addition to a regular return instruction, the return point from the subroutine is also pre-defined to be EndA, which allows an alternative means of subroutine return that provides extra convenience. 
A program segment with CALL/RTN instructions may look like the following:





CALL   BckA1   EndA1   DesA1
BckA1





Processes after Subroutine Return
DesA1






Subroutine 
EndA1
RTN (optional)
After the CALL instruction, the PC jumps to DesA1 to execute the subroutine.  Once PC reaches EndA1, it returns to BckA1.  The instruction at EndA1 needs not to be RTN.  Therefore any program segment can be called as a subroutine.
The RTN instruction is provided primarily for possible early returns in the subroutines.  The RTN instruction may also be used when early breaks are needed in the FOR loops.
E. Nesting Loops

Multi-layer FOR or CALL loops can be nested.  When an inner layer starts, the parameters of the unfinished outer loop are pushed into the stack, which allows the outer loop to continue after the inner loop finishes.
Note that in the FOR loops, inner loops can be nested not only in the repeating processes, but also in the initialization processes.  This design arrangement provides convenience for the programmers when subroutine calls or FOR loops are needed in the initialization, such as presetting an array.

Up to 128 layers of loops can be nested.  It is users’ responsibility not to nest more than 128 layers of loops.  It should be sufficient for practical applications.  For example, if 64 layers FOR loops, each iterating 2 times, are nested together, it will take the sequencer to run more than 2000 years even at 250 MHz.
F. The User Instructions

When the bits 32-35 of the instruction word are all 0, the word represents a user instruction.  The users have maximum flexibility to define their own instruction sets based on the application.  We would like to present the instruction set we used for the Fermilab BLM system as an example as shown in Table II.
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A user instruction contains four 4-bit instruction fields: SEQA, SEQB, SEQC and SEQDQQ and two address/data fields: ADH and ADL.  Each instruction field is decoded into up to 15 control signals that match the signals shown in Fig. 2.  The SEQDQQ are delayed by a 2-step pipeline before being decoded.  The control signals generated from SEQDQQ are essentially register enable signals for reading out contents from the Parameter RAM and the Sum Keeping RAM that are registered on both input and output ports.  The ADH and ADL field are used to provide addresses for memory access or to specify initial values for some registers.
Sometimes, several control signals must be turned on simultaneously.  While defining the instruction set, signals that might be turned on simultaneously are carefully assigned into different column in Table II.
G. Sample Codes

The ELMS codes for calculating 16 sliding sums in our application are shown in Table III.

After reset, the PC starts from 00.  The sequencer runs into a dead loop at PC = 03.  The unconditional instruction, JMP to 03 is “executed” every clock cycle.  However, there is no bit flipping at all.  The sequencer and the logics it controls are effectively in a sleep mode that consumes no dynamic power.

When an external “do sums” signal arrives, the “RUNat04” signal in Fig. 3 is turned on for a clock cycle that forces the PC to become 04.  The ELMS then goes through the sequence of calculation the sliding sums.  The FOR instruction at PC = 07 sets the outer loop for 4 types of the sliding sums (immediate, fast, slow and very-slow).  Then the FOR instruction at PC = 0A sets the inner loop for 4 input channels.  The type and channel of the sliding sums are indexed by two counters that are initialized and incremented by the SetType, IncType, SetCh and IncCh instructions, respectively.
The “compiler” we used is a Microsoft Excel spread sheet.  The search and index functions are used to find labels and instructions.  Each row is composed as a 36-bit integer in the column “code”.  The columns “PC” and “code” are taken into another worksheet which then saved as a text file.  The text file can be directly used as a “memory initialization file” that specifies the ROM contents in the FPGA.
IV. FPGA Implementations
The ELMS has been used in the Sums03 FPGA of the digitizer card for the Fermilab BLM system.  A bare ELMS circuit plus three 8-bit accumulators has also been compiled and simulated in a test project ELMS1.  Compile results are shown in Table IV.
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It can be seen that the resource usage of the ELMS is very small, leaving most portion of the FPGA for data processing functions defined by users.  As a result of using ELMS, significant portion of the resources for calculating the sliding sums and the integration sums are reused multiple times for each measurement.  Without resource reusing, the whole function would not fit our FPGA.
The non-pipelined and pipelined versions of the ELMS1 project are compiled with 153 MHz and 250 MHz maximum operating frequencies, respectively.  The internal clock of the Sums03 FPGA is 50 MHz.  The project is compiled with maximum operating frequency 61 MHz.
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Mixed CALL/FOR nested loops are simulated in the ELMS1 project.  The simulation result of the ELMS1 project is shown in Fig. 4.

For simplicity, the reader may ignore all signals above PCQQ which represents current program counter PC.  The program that the simulation runs can be written in the following:
PC06

CALL   PC07   PC1C   PC12
PC07







No-op
PC12



SETCCC
C1





FOR

PC14
PC1C
01
PC14



SETBBB
88





FOR

PC16
PC1B
01
PC16



SETAAA
11





FOR

PC18
PC1A
02
PC18



No-op
PC19



No-op
PC1A



ADDAAA
11
PC1B



SUBBBB
11


PC1C



ADDCCC
01
The program segment between PC12 to PC1C contains three layers of nested FOR loops.  The signals IMQQ[31..28] (=Proc) reflect bit contents stored in the program ROM and they are used as indicators of the nested loops and the program passage between PC12 and PC1C.  The user instructions SETAAA, SETBBB, SETCCC, ADDAAA, SUBCCC and ADDCCC are defined to set, add or subtract the user index counters AAA, BBB and CCC with immediate constants.  As expected, the simulation shows that the counter AAA runs with values 11, 22, 33, the BBB with 88, 77 and CCC with C1, C2.
Note that at PC06, the CALL instruction causes the ELMS to run a subroutine between PC12 and PC1C and demanding the return address at PC07.  It can be seen from the simulation that the PCQQ signal jumps from 06 to 12 due to the CALL instruction.  It then loops between 18 to 1A for the inner layer, between 16 to 1B for the middle layer and between 14 to 1C for the outer layer.  The PCQQ returns from 1C to 07 after finishing the subroutine.  The PCQQ then runs from 07, 08, and so on until 12 that the looping between PC12 to PC1C starts again.
As mentioned earlier, any program passage can be called as a subroutine even without a RTN instruction, like the passage between PC12 to PC1C in this example.  The FOR and CALL instructions share the same return stack resources and can be nested together in any layer structure.

V. Discussion
Several design considerations of the ELMS are to be discussed in this section.
A. The Sequencer without Data Processing Resources
In history, there are computers employing the “Harvard” architecture in which storages of program and data are physically separated.  Most of today’s general purpose micro-processors use the “Princeton” architecture in which the program and data are stored in same external memory.  However, inside the micro-processor, the program and data are usually stored in separate caches and in this level it is the Harvard structure again.
In the ELMS development, the data and program are further separated beyond the Harvard architecture.  A micro-sequencer is not a CPU since the sequencer itself does not have capabilities for general purpose data processing.  The micro-sequencer controls external data processing resources by toggling control signals.
In FPGA computing, this arrangement allows maximum flexibility in the data domain.  The widths of data words, addressing modes and number of processing channels etc. can be chosen by the designer without any restrictions as in general purpose micro-processors.
Without data processing resources, conditional branches are discouraged in micro-sequencer while loops using the build-in FOR loop support are encouraged.
B. Constant Iteration FOR Loop Support

Using loops in program is a primary means of code reusing.  Supporting block-styled constant iteration FOR loop without using a conditional branch instruction is a unique feature of the ELMS.  Of course, the ELMS must still support conditional branch instruction JMPIF since the FOR loops can only replace conditional branches in many but not all instances.

In advanced micro-processors, branch penalty becomes more serious as the pipeline becomes deeper and deeper.  The problem is attempted being solved by branch prediction with additional resource and there are good algorithms in this area. 
When a FOR loop with constant iteration is programmed, the branching sequence is pre-defined.  There should be no branch penalty at all.  However, when using conditional branch to conduct the loop, the originally known sequence becomes unknown and the branch condition must be evaluated each time reaching the end of the loop.  With FOR loops available in machine code level, it helps to ease the branch penalty problem.
In FPGA, the clock speed difference between pipelined and non-pipelined ROM is not very significant.  In cases as in our example, clock frequency as low as 50 MHz is sufficient which makes non-pipelined structures more preferable.  The benefit of the FOR loop on reducing branch penalty is therefore not very obvious.  Nevertheless, the FOR loop is still a convenient program instruction to achieve silicon resource and code reusing.

In practical, indexes must be kept in loops to distinguish different passes of the loops.  In the ELMS, the pass counter for the FOR loop can be viewed as an index.  However, we chose for the user to implement external user indexes rather than supporting them inside the micro-sequencer.  The separation of the pass counter and the user indexes simplifies the ELMS design significantly.
In our example, the number of iteration “cnt” is an immediate value come with the FOR instruction.  However, there is no fundamental reason why this value can not be stored in a user register.  This way, FOR loops with variable number of iteration can be supported, which is very useful in applications like matrix computation.
C. Software Issues

The operation of a micro-sequencer is conducted by a pre-stored program.  Just as in micro-processor computing, the software must be appropriately coded and compiled for given computing tasks.  Based on experience of micro-processor computing, it is known that software engineering could become a major effort in certain tasks.
The complexity of software is only partially necessary for the application and is partially artificial, essentially due to complexity of the hardware or firmware.  Therefore, the best way to reduce software complexity is to simplify the hardware or firmware design.

The architecture of the ELMS is directly reflected in its instruction set.  There are only a handful program flow control instructions that are native to the ELMS.  All the remaining ones are user instructions that are application specific.  Unlike in micro-processors that the users code a program using existing instruction set, in FPGA with the ELMS the users designs the instruction set as well as program them into desired sequence.

From our practical design, we have used spread sheets as our tools for keeping track the instruction set design, program coding, compiling as well as documenting.  This way, the effort of software design is controlled within a reasonable fraction of the entire work.

VI. Conclusion

The ELMS provides an option of sequence control in FPGA with very low resource usage.  It has been used for the Fermilab BLM system with expected performance and flexible reprogramming ability.
It also provides some hints on fighting branch penalty problems for advanced micro-processor development.  Clearly, there is a whole array of associated issues that must be studied in the future.
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Fig. 2.  The partial block diagram of the Sums03 FPGA


 





TABLE III


Sample Codes of the Elms


PC�
Label�
BR


Instr.�
BckA�
EndA�
cnt/desA�
SEQA�
SEQB�
SEQC�
SEQDQQ�
ADH�
ADL�
code�
Notes�
�
00�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
000000000�
�
�
01�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
000000000�
�
�
02�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
000000000�
�
�
03�
DeadBk3�
8�
JMP�
�
�
�
�
�
DeadBk3�
03�
�
�
�
�
�
�
�
�
�
�
800000003�
dead loop after reset�
�
04�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
000000000�
do sums begins at 0x04�
�
05�
�
�
�
�
�
�
�
�
�
�
1�
IncCirBufPT�
�
�
�
�
�
�
�
�
010000000�
�
�
06�
�
�
�
�
�
�
�
�
�
�
�
�
1�
SetType�
�
�
�
�
0�
�
001000000�
*** sliding sums begin ***�
�
07�
�
2�
FOR�
TypeBgn1�
08�
TypeEnd1�
17�
3�
�
3�
�
�
�
�
�
�
�
�
�
�
200081703�
�
�
08�
TypeBgn1�
�
�
�
�
�
�
�
�
�
3�
SelSumLengths�
�
�
�
1�
EnQLen�
�
40�
030010040�
load sum length of the type�
�
09�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
1�
SetCh�
�
�
�
0�
000100000�
�
�
0A�
�
2�
FOR�
ChBgn1�
0B�
ChEnd1�
16�
3�
�
3�
�
�
�
�
�
�
�
�
�
�
2000B1603�
�
�
0B�
ChBgn1�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
2�
EnQCH�
�
48�
000020048�
current hit�
�
0C�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
8�
LdSumMQ�
80�
�
000088000�
stored sum�
�
0D�
�
�
�
�
�
�
�
�
�
�
4�
EnSumsMemA�
�
�
�
�
4�
LdModeSelX�
�
68�
040040068�
�
�
0E�
�
�
�
�
�
�
�
�
�
�
5�
SumsMemCS�
5�
SumsMemOE�
�
�
�
�
�
�
055000000�
�
�
0F�
�
�
�
�
�
�
�
�
�
�
5�
SumsMemCS�
5�
SumsMemOE�
6�
EnQTailSqch�
�
�
�
�
055600000�
load tail�
�
10�
�
�
�
�
�
�
�
�
�
�
9�
EnSumD�
9�
sloadSumD�
9�
SelSumMQQ�
�
�
�
�
099900000�
old sum�
�
11�
�
�
�
�
�
�
�
�
�
�
9�
EnSumD�
�
�
11�
SelQCH�
�
�
�
�
090B00000�
+current value�
�
12�
�
�
�
�
�
�
�
�
�
�
9�
EnSumD�
8�
SubSumD�
12�
SelTailSqch�
�
�
�
�
098C00000�
-tail = new sum�
�
13�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
000000000�
�
�
14�
�
�
�
�
�
�
�
�
�
�
11�
WRsumX�
�
�
�
�
�
�
80�
�
0B0008000�
�
�
15�
�
�
�
�
�
�
�
�
�
�
12�
ChkSumsOT�
�
�
�
�
�
�
�
�
0C0000000�
�
�
16�
ChEnd1�
�
�
�
�
�
�
�
�
�
�
�
�
�
2�
IncCh�
�
�
�
�
000200000�
�
�
17�
TypeEnd1�
�
�
�
�
�
�
�
�
�
�
2�
IncType�
�
�
�
�
�
�
002000000�
*** sliding sums fin ***�
�






��


Fig. 1.  Micro-Sequencers:  When the program counter increases, the control signals changes states according to the sequence stored in the ROM.  Left: PC+ROM structure.  Right: the Enclosed Loop Micro-Sequencer (ELMS).
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Fig. 3.  Detailed block diagram of the Enclosed Loop Micro-Sequencer (ELMS):  The Loop & Return Registers + Stack block provides support of the “FOR” loop with constant iterations. 
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Fig. 4.  The simulation result of the ELMS1 project





TABLE II


The User Instruction Set Used in Fermilab BLM System


Bit 35:32�
31:28�
27:24�
23:20�
19:16�
15:8�
7:0�
�
0000�
SEQA�
SEQB�
SEQC�
SEQDQQ�
ADH�
ADL�
�



 �
Branch 


Instruction�
SEQA�
SEQB�
SEQC�
SEQDQQ�
�
0�
 �
 �
 �
 �
 �
�
1�
JMPIF�
IncCirBufPT�
SetType�
SetCh�
EnQLen�
�
2�
FOR�
ChkJMPcond�
IncType�
IncCh�
EnQCH�
�
3�
 �
SelSumLengths�
 �
 �
 �
�
4�
RTN�
EnSumsMemA�
SelCurrAddr�
 �
LdModeSelX�
�
5�
 �
SumsMemCS�
SumsMemOE�
SumsMemWE�
LdDAC_OutX�
�
6�
 �
 �
SelQSqch�
EnQTailSqch�
 �
�
7�
 �
 �
 �
Sel64HI�
LdSumMQH�
�
8�
JMP�
 �
SubSumD�
SelInitValue�
LdSumMQ�
�
9�
 �
EnSumD�
sloadSumD�
SelSumMQQ�
EnQSqch�
�
10�
CALL�
LatchIntg�
 �
SelSumMQQShift�
EnQPedL�
�
11�
 �
WRsumX�
SelIntgX�
SelQCH�
EnQPedH�
�
12�
BRK�
ChkSumsOT�
ChkIntgOT�
SelTailSqch�
 �
�
13�
 �
 �
 �
SelPed�
 �
�
14�
 �
WRconstX�
SelConstH�
OnLatchX�
 �
�
15�
 �
 �
WrDACs�
EndCycle�
 �
�









TABLE IV


Silicon Usage of The ELMS


Device


Price: (May 2006)�
EP1C6Q240C6


$28�
�
�
Logic Elements


(5980 total)�
M4K memory blocks (20 total)�
�
Whole Sums03 FPGA�
1900 (31%)�
15 (75%)�
�
Seq128 


(ELMS + etc.)�
212 (3.5%)�
2 (10%)�
�
ELMS1


(ELMS+


3 8bit-accumulators)�
193 (3%)�
2 (10%)�
�






TABLE I


Program Control Instructions


�
35�
34�
33�
32�
31:24�
23:16�
15:8�
7:0�
Notes�
�
JMP�
1�
0�
0�
0�
�
�
�
desA�
Unconditional go to desA�
�
JMPIF�
0�
0�
0�
1�
�
�
�
desA�
Conditional go to desA�
�
FOR�
0�
0�
1�
0�
�
BckA�
EndA�
cnt�
Repeat cnt+1 times form BckA to EndA�
�
CALL�
1�
0�
1�
0�
�
BckA�
EndA�
desA�
Go to desA, upon PC=EndA, go BckA�
�
RTN�
0�
1�
0�
0�
�
�
�
�
Return, pop stack�
�
�
0�
0�
0�
0�
X�
X�
X�
X�
User instructions�
�
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