Integrated Upstream Parasitic Event Building Architecture for BTeV Level 1 Pixel Trigger System

Jinyuan Wu, M. Wang, E. Gottschalk, D. Christian, Z. Shi, V. Pavlicek and G. Cancelo

Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

X. Li

Illinois Institute of Technology

jywu168@fnal.gov (630)840-8911

Abstract:

Contemporary event building approaches use data switches, either homemade or commercial off-the-shelf ones, to merge data from different channels and distribute them among processor nodes. However, in many trigger and DAQ systems, the merging and distributing functions can often be performed by pre-processing stages. By carefully integrating these functions into the upstream pre-processing stages, the events can be built without dedicated switches. In addition to the cost saving, we gain extra benefits when the event is built early upstream. We will describe an example of the integrated upstream parasitic event building architecture that has been studied for the BTeV level 1 pixel trigger system. We will also discuss several design considerations that experimentalists of other projects might be interested in.
Summary:

In the BTeV experiment, data from 60 pixel detector half-planes are collected by the pixel data combiner boards into 960 serial data channels. The 960 channels, 2.5 Gb/s each, are organized in 8 “highways”, 120 channels per highway. In normal operation, the pixel data combiner boards distribute the data to the highways evenly. The data are sent to the level 1 pixel trigger system via 960 optical fibers. The general view of the DAQ and trigger systems will be described in our other papers.
In each highway, data from 120 channels, each representing pixel hits from a fraction of the detector plane, must be pre-processed, merged and distributed into a set of segment tracking (ST) modules which will find the track segments. The track segments are then sent to a farm of CPU nodes to combine segments into tracks, identify the vertices of the interactions and the detached tracks signifying B events. The pre-processing functions in the pixel trigger system include receiving the serial data inputs, time stamp ordering, clustering and coordinate system conversion, etc.

The event building function is carefully integrated into several pre-processor stages. In each stage, several input channels are merged together and the pre-processing functions for this stage are performed. Upon output from each stage, the data are distributed over several output channels based on the beam cross-over (BCO) number of the particular data. The next stage will do similar merging and distributing functions. After several stages, data from all 120 input channels with a particular BCO number are merged together in a segment tracker. Therefore the full event is processed in a segment tracker allowing hits from different planes to be connected together as track segments. Data with different BCO numbers are distributed to different segment trackers so that the full data bandwidth is shared among all of them.
Disregarding the specific pre-processor function, each stage can be viewed as a set of switch fabrics each with a few input channels and a few output channels. The entire data-combiner/pre-processor/segment tracker system has a topological structure similar to a multi-stage data switch. However, there is no lump-sum dedicated switch; the switching functions are parasitically spread over the pre-processor system occupying minimal logic resources in each stage. Since only a few channels are to be merged in each “fabric”, and some resources such as serial-to-parallel conversion, memory buffers, I/O pins, etc. are already part of the design of the pre-processing functions, the additional FPGA resource required for switching function is not large.
Despite elimination of lump-sum dedicated switch, the integrated upstream parasitic event building architecture still provides same benefits provided by a conventional switch. It allows more flexibility with trigger algorithms, the ability to easily rescale hardware resources in response to changing running conditions, and the ability to route data around failed hardware components. For example, without upstream event building, each segment tracker receives data for every BCO from 3 adjacent detector planes. With upstream event building, each segment tracker receives data for only some BCO from all detector planes. In addition to the cost saving (no lump-sum switch, less inter connection links here etc.), we also gain better fault tolerance. A fault encountered by a segment tracker will not stop the entire system, it will only need to reroute data for some BCO numbers to different segment trackers. At worst, some crossings will be dropped from processing until the fault is mitigated.
We’d like to discuss several design considerations that may be of interest to other HEP experiments building similar systems. The first is that the entire merging function should be distributed into as many stages as reasonable so that each stage will only merge a few channels. The logic element usage in an FPGA for MUX functions that merge N inputs into M outputs is O(N x M). Keeping the “fabric” small will minimize interference with the primary pre-processing function. This will also simplify the interconnections between the stages significantly. Note that it is not necessary for the pre-processor stage to build the full event; the stage that needs the full event can also perform the last step of merging. This will help keep the merging factors in pre-processor stages small. In our example, the segment tracker stage needs data from all 120 inputs. Instead of merging all 120 inputs together in pre-processor stages, we can just merge 15 inputs together into a group, 8 groups total, and let the segment tracker to merge the last factor of 8 to finish the event building. This consideration may be called “under-switching”.
The second consideration can be called “over-switching”. Event building is not the only purpose of data switching. In HEP trigger and DAQ systems, data are also switched for load balancing, fault tolerance etc. In our example, between the segment trackers and the CPU farm nodes, the single large event building switch is now replaced by a number of much simpler distributed interconnection devices called “buffer managers” that allows data from any of a few segment trackers to be sent to any node in a set of nodes. The buffer manager stage is not used for event building purpose, but the “over-switching” it provides is essential for fault tolerance when dealing with CPU farm node failures, which are likely to happen in large farms.
Another consideration is to reduce number of possible error sources. For example, FIFO buffers are normally used to average out the peak rate of the input data. Whenever a FIFO is used, there is the risk of buffer overruns. One may increase the buffer size to reduce the probability of the error, but it is still an error source and must be handled by the monitoring system. Careful design practice will limit the use of FIFO-like buffers and hence eliminate unnecessary error sources.
