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FPGA Curved Track Fitter
With Very Low Resource Usage
Jinyuan Wu, M. Wang, E. Gottschalk and Z. Shi
Abstract—Standard least-squares curved track fitting process is tailored for FPGA implementation.  The coefficients in the fitting matrices are carefully chosen so that only shift and accumulation operations are used in the process.  The divisions and full multiplications are eliminated.  Comparison in an application example shows that the fitting errors of the low resource usage implementation are less than 4% bigger than the fitting errors of the exact least-squares algorithm.  The implementation is suitable for low-cost, low-power applications such as high energy physics detector trigger systems.
Index Terms—Trigger, Track Fitting, FPGA Firmware, FPGA Computation
I. INTRODUCTION
I
N high-energy physics experiment detectors, track fitting is normally considered as a software task in the higher level trigger stage or analysis stage.  Although direct porting the fitting algorithm into today’s large size FPGA is not impossible, the cost and power consumption quickly become concerns without careful resource usage control.  In fact, many silicon area and power consuming operations like multiplications and divisions in many algorithms can be eliminated or replaced by low resource usage operations such as shifts, additions and subtractions.  A process deviating from the mathematically accurate one certainly produces less perfect results.  However, significant reduction in FPGA logic elements and power consumption overweighs small imperfectness.
In this paper, we describe a curved track fitting functional block suitable for FPGA implementation.  The fitting is based on standard least-squares algorithm with modifications on the matrix coefficients to eliminate divisions and full multiplications.  The functional block is designed to match data fetching speed so that it can be used to process flowing data stream in trigger and DAQ systems.
The FPGA track fitter was developed for the level 1 pixel trigger of the Fermilab BTeV experiment[1]

 REF _Ref103762419 \n \h 
[2].  The pixel detector consists of measurement planes as shown in Fig. 1.


[image: image1]
The hits on pixel planes are first grouped into track segments in the FPGA segment tracker using a triplet finding algorithm like Tiny Triplet Finder (TTF)[3].  Then the hits from a track are grouped together, followed by track fitting, i.e., calculation of the track parameters.  In the original baseline of BTeV trigger system, the track fitting is done in the trigger CPU farm partially because the hits from full detector are not switched together until reaching the CPU farm.  With our 2004 architecture [4], events are built parasitically in the early stages.  Therefore, hits from full detector are available in the FPGA segment tracker, which makes it possible to perform track fitting in FPGA.
II. Principle
A. Computations for Track Fitting
The track is projected to both the non-bend and bend views and its equations can be written approximately:
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(1)
Either a track has odd or even number of hits, a center of the track is chosen with z=z0 as shown in Fig. 1.  The parameters x0 and y0 are offsets of the track and l and h are slopes at track center.  The parameter  represents the curvature of the track that represents track momentum.  With a set of coordinate measurements xi and yi, the parameters of the tracks can be found with the following linear combinations.
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(2)
The coefficients can be chosen nearly freely as long as the following constraints are met:
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Depending on the choice of the coefficients in the linear combination, the errors of the fitting can be different and the coefficients derived from the least-squares fitting provide minimum errors for track reconstruction.
B. Non-Division Integer-Only Operations for FPGA

In general, the computations above need floating point multiplications and divisions.  To simplify the computation so that it can be done in FPGA with low resource usage, the advantage of invariance of Equations (2) through (7) under re-scaling can be taken.  Each set of coefficients can be multiplied with a common factor so that the sums in the denominators in Equation (2) become 32, 512 or 4096.  The constraints for the coefficients can be summarized as following:
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(12)
Then the linear combinations for calculating the track parameters can be rewritten:
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The unit of measured coordinates x[i] and y[i] are chosen so that they are integers.  For example, the channel number in the silicon pixel detector can be used as the hit coordinates.  The coefficients in the linear combinations are also chosen to be integers and the results of the linear combinations: xx32, ll512, yy32, hh512 and eta4096 are also integers, representing the corresponding parameters scaled by factors of 32, 512 and 4096, respectively.  Note that divisions are not needed anymore.  The only computations needed in Equation (8) are integer multiplications and accumulation.

The unit in z direction is chosen so that the separation between two detector planes is 2.  In this unit, the possible values of (zi - z0) are also integers, which are even when the number of hits is odd with the middle plane being 0 and are odd when the number of hits is even with the two center detector planes being -1 and +1.
C. Eliminating Full Multiplications

To reduce computations further, the coefficients in the linear combinations are limited to the “weight-two” or “two-bit” integers, e.g. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, which are 2m+2n or 2m-2n with positive integers m and n.  An example of choosing e[i] for tracks with odd numbers of hits is shown in Table I.


[image: image15]
The columns of ei in Table I represent coefficients derived from the least-squares fitting.  The e[i] coefficients are chosen in a spread sheet, guided by the ei coefficients.  Since the parameterization of the track in Equation (1) is chosen with symmetry around z0, the coefficients for the least-squares fitting are also symmetric.  Some symmetric properties are sufficient conditions for certain constraints in Equations (8) though (12).  For example, the symmetric property ei = e-i exists and it is a sufficient condition for the constraint ei(zi-z0)=0 making it satisfied automatically.  Appropriate symmetries are programmed in the spread sheet cells so that the constraints and scaling requirement are satisfied with minimum hand editing.  In our work, the coefficient selection is semi-automatic, partially for purpose of our own better understanding to the problem.  Clearly it is not too difficult to write a program that chooses the coefficients automatically.
The relative errors contributed by the parameter  for both algorithms are calculated.  The error here is defined as transverse reconstruction RMS error after projecting the track by half-length (L/2) from first or last hit of the track, with unit of the RMS error for the y[i] measurements.  Assume the errors of y[i] measurements yi are independent and they have a same RMS value y, then the error of calculating parameter  can be estimated:
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The assumption of independence of the measurement errors may be violated if most tracks are high momentum and parallel but it is a good approximation for typical detector configuration.  The transverse reconstruction RMS error Y after projecting the track by half-length from first or last hit of the track, i.e., (z-z0) = 2(L/2), can be calculated:
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Note that the “projecting” here should just be viewed as a rescaling process to bring the fitting error of a parameter to a convenient unit.  It is an estimate for a single parameter only.  If, for example, the vertex measurement error is needed, the errors for all parameters should be considered simultaneously since they could be correlated.  The coefficients e[i] for tracks with even numbers of hits is shown in Table II.

[image: image18]
The relative errors contributed by the parameter  for both algorithms are also calculated in Table II.
From Tables I and II, it can be seen that the errors increases for approximate algorithm with the two-bit integer-only coefficients comparing with the mathematically perfect least-squares algorithm.  However, the imperfectness of coefficients for the FPGA fitting algorithm increases the track reconstruction errors only slightly (less than 4%). 
III. FPGA Implementation
The block diagram of the FPGA performing the track fitting functions is shown in Fig. 2.  The hit coordinates x(i) and y(i) are clocked through the fitter, one clock cycles per number. 

[image: image19]
For each parameter, an accumulator is used to calculate the linear combination.  The coordinate data is shifted through a logarithmic shifter by pre-defined numbers of bits that are stored in the constant memory.  The shifted version of the coordinate is added to or subtracted from the accumulator.

Each coordinate is shifted and added/subtracted twice that is equivalent to multiplying the coordinate by a two-bit integer and accumulating for the linear combination.  The operation uses two clock cycles that matches the number of cycles needed to fetch a pair of coordinates x(i) and y(i).

For a fitter processing 16-bit coordinates, 630 logic elements can be accounted for in the register, shifter & accumulator blocks for the 5 parameters.  The silicon resource usage of this portion is about 11% of a $30 Altera EP1C6 [5] device.

IV. Fitting Errors and Discussions
The coefficients of fitting matrix for the other two parameters of a curved track yy32 and hh512 are also calculated using similar procedures as shown in Table III-VI.  The coefficients chosen are two-bit integers.  The relative fitting errors contributed by these two parameters are also calculated.  The relative errors contributed by the three parameters with different track lengths for both least-squares and approximate algorithms are plotted in Fig. 3.
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The approximate algorithm used in FPGA increases the fitting errors for all parameters as expected from mathematic principle.  However, the differences are very small.  In other words, the fitting errors are relatively insensitive to the variations of the coefficients of the fitting matrix.
It can be seen from Fig. 3 that the relative error contributed by the curvature parameter is significantly higher than the errors contributed by the offset and slope parameters.  We will focus on the curvature parameter in our discussion.
In general, fitting of longer tracks yields smaller errors due to two reasons: longer lever arms and more measurement points.  In order to compare these two effects, relative errors contributed by the curvature parameter calculated with several fitting schemes are plotted in Fig. 4.
In addition to the least-squares algorithm and the FPGA approximation shown in Table I and II, two other “3-point” algorithms are also studied.  One of the 3-point schemes calculates eta4096 using hits of the first three detector planes at the beginning of a track.  In this case, the lever arm is a fix length, despite of extra length provided by additional planes.  This scheme produces largest errors.  When the track is projected over long distances, the errors increase rapidly.  The calculation method of this scheme is the simplest.  However, the results from this scheme is only useful as a coarse estimate of track momentum, it causes large errors due to short lever arm when the tracks are to be projected in long distance.

[image: image25]
The other 3-point scheme calculates the eta4096 using the first, the middle and the last hits of a track.  In this situation, advantage of the full length of the track is taken.  However, the information provided by the redundant measurements of the other points in the track is not used.  The relative errors when the track is projected over half-length are nearly a constant.

The full-length 3-point scheme may appear to be simpler in computation than the FPGA fitting scheme, but actually it is not the case.  To calculate eta4096 using the 3-point scheme, a floating point multiplication is needed in order to bring results for different track lengths into a unified scale.  In the FPGA fitting scheme, the scale unification is achieved through choosing the two-bit coefficients.
V. Conclusion

A fitting algorithm suitable for FPGA implementation has been discussed.  With integer shifting and accumulating operations, the fitting errors in the approximate algorithm is only slightly larger than the errors of the least-squares fitting algorithm.

Multipliers are now available in more and more FPGA devices today and it seems that eliminating multiplications is not as critical as several years ago.  Intrinsically, however, multiplication is a power and resource consuming operation.  It is still a good practice to reserve multipliers to the processes in which multiplications absolutely can not be eliminated, or the substitution of the multiplications causes significant degrade of the quality of the results.
Generally speaking, more computations yield better quality of the results.  From the 3-point schemes, to the FPGA fitter, to the least-squares algorithm, the fitting errors reduce as number of total operations increases.  However, after certain point, the quality of the results does not improve as rapidly as before.  It is common that large amount of computation brings only small improvement in the mathematically perfect algorithms.  So it is possible to find algorithms with reasonable amount of computations that produce sufficiently good results, as illustrated in this paper.
Appendix

In this section, we first define a matrix called algorithm matrix which represents a generic fitting algorithm.  Then we will show that the least-squares algorithm is a special case of the generic algorithms and compare their fitting errors.

Consider fitting n measurement points with a set of m (m<n) functions using various algorithms:
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(A1)

In fitting with parabola, e.g., the functions v0(x) v1(x), v2(x) are chosen to be 1, x, x2.  The parameters a0, a1 to am are to be evaluated through fitting the measurement data (x1, y1), (x2, y2) to (xn, yn).  The x-coordinates here are known and can have any values.  We use an n-row by m-column matrix V = {vij} = {vj(xi)} to denote the function values at the corresponding measurement points.
Definition 1: The algorithm matrix g = {gji} is defined to be an m-row by n-column left inverse matrix of V:
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With an algorithm matrix g, the values calculated from the following linear combinations are called a set of fitting parameters under algorithm g:
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With constraints (A2), the parameters calculated in (A3) reduce to the “true” values if the fitting model (A1) is correct and there are no measurement errors.  In fact, if for a set of parameters A’ (the “true” values), the linear equation system Y=VA’ holds on all rows, then A = gY = gVA’ = IA’ = A’.

In general the left inverse g of n x m matrix V is not unique.  For each parameter aj, there are n values of gji that satisfy (m+1) constraints which permits different values of gji to be chosen.  Each set of gji values corresponds to a particular fitting algorithm.  It can be shown that the least-squares fitting algorithm is a special case of the generic algorithms.
We skip detailed deriving process of least-squares fitting and directly write done the final result:
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We use G to represent the algorithm matrix of the least-squares fitting.  Comparing with (A3), it can be seen that:
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Clearly matrix G satisfies the left inverse constraints given in (A2):
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The least-squares algorithm is chosen as a reference.  All the other generic fitting algorithms are viewed as a deviation from the least-squares algorithm:
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It can be seen from (A7) and (A2) that the row space of g is orthogonal to the column space of V:
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The equation (A8) is true for the difference of any two algorithms but we will use g to denote only the difference between an arbitrary algorithm and the least-squares algorithm.

Theorem 1: The row space of difference matrix g of two algorithms is orthogonal to the row space of the algorithm matrix G of the least-squares fitting:
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Combining (A5) and (A8) gives (A9).  In fact, (A5) describes that the row space of G is in the column space of V and according to (A8) the row space of g is orthogonal to any vectors in the column space of V including row vectors of G.
In order to visualize Theorem 1 in a picture, consider a linear fitting with three data points: (x1, y1), (x2, y2) and (x3, y3).  The two columns in matrix V can be shown as two vectors in the R3 space: v0 = (x10, x20, x30)T = (1,1,1)T and v1 = (x11, x21, x31)T as shown in Fig. 5.


[image: image35]
The row vector g1 of algorithm matrix g must satisfy the constraints g1v0=0 which is the equation of plane PA that is perpendicular to v0 and passes the origin.  The constraint g1v1=1 is the equation of plane PD that is perpendicular to v1 and passes point v1/(v1Tv1)2.  The vector g1 can only take values in the intersection of PA and PD.  Similarly, g0 can only take values in the intersection of PB and PC.
The least-squares algorithm corresponds to the choice of G0 and G1 which are co-planar with v0 and v1 and have shortest lengths.  For any other algorithms, the algorithm vector g0 and g1 have longer lengths.  The differences (g0-G0) and (g1-G1) are orthogonal to G0 and G1.
Now consider fitting error for each of the parameters a0, a1 to am.  If the y-measurements are independents and they have a same standard deviation y, the variations of the parameters can be written:
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The square-sum in (A10) is actually the length of the row vector of the matrix g.  It contains contributions from the least-squares algorithm and the additions from the deviation:
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The middle sum term in (A10) vanishes because from (A9), the row spaces of g and G are orthogonal.  The variations of the fitting parameters due to measurement errors are simply composed with two parts:
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The equation (A12) reflects a fact that the variation of the parameters is a minimum when the least-squares fitting algorithm is used.  Around this point, the fitting errors are relatively insensitive to the change of gji values allowing the user to choose different gji values to reduce total computations without increasing fitting errors significantly.  If, for example, all gji values differ from Gji values by 10%, the error of each parameter increases by only about 0.5% from the minimum value.
The relative fitting errors of the curvature parameter , (i.e., a2) with 17 measurement points for various algorithm deviations are shown in Fig. 6.  This is the case given in the columns with half length of the track =16 in Table I.

[image: image39]
The algorithm deviations are normalized by dividing the algorithm length of the least-squares fitting, i.e., the horizontal axis in Fig. 6 is square root of g2i2/G2i2.  The fitting errors are also normalized with the least-squares fitting result given in the first column of Table I.  The 17 independent measurement points construct a R17 space.  The 3 constraints that g2i must satisfy restrict the algorithm vector on a 14-dimensional hyper-plane.  The parameters g2i (i.e., the e[i] values in second column of Table I) are chosen randomly deviating from the least-squares fitting algorithm.  The relative fitting errors behave as suggested in (A12). 
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TABLE V

Coefficients for the FPGA Track Fitter (Offset, Odd Hits)

Half-length of the Track�
�
z-z0�
16�
14�
12�
10�
8�
6�
4�
�
�
ci�
c[i]�
ci�
c[i]�
ci�
c[i]�
ci�
c[i]�
ci�
c[i]�
ci�
c[i]�
ci�
c[i]�
�
-16�
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 �
 �
 �
 �
 �
 �
�
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-1�
-2.3�
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�
�
�
�
�
�
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1�
-0.4�
0�
-2.5�
-3�
�
�
�
�
�
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2�
1.2�
1�
0.0�
0�
-2.7�
-3�
�
�
�
�
-8�
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3�
2.5�
1�
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3�
0.7�
1�
-2.9�
-3�
�
�
�
-6�
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3�
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4�
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4�
3.3�
4�
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2�
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-3�
�
�
-4�
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3�
4.3�
4�
4.7�
5�
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4�
5.4�
6�
4.6�
5�
-2.7�
-3�
�
-2�
4.2�
4�
4.7�
5�
5.4�
4�
6.3�
7�
7.5�
6�
9.1�
7�
11.0�
12�
�
0�
4.3�
6�
4.8�
6�
5.6�
6�
6.6�
6�
8.2�
10�
10.7�
14�
15.5�
14�
�
2�
4.2�
4�
4.7�
5�
5.4�
4�
6.3�
7�
7.5�
6�
9.1�
7�
11.0�
12�
�
4�
3.9�
3�
4.3�
4�
4.7�
5�
5.1�
4�
5.4�
6�
4.6�
5�
-2.7�
-3�
�
6�
3.4�
3�
3.5�
4�
3.6�
4�
3.3�
4�
1.9�
2�
-3.0�
-3�
 �
�
8�
2.7�
3�
2.5�
1�
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3�
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-3�
 �
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�
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 �
�
�
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-3�
 �
�
�
�
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 �
�
�
�
�
�
16�
-2.1�
-2�
 �
�
�
�
�
�
�
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0.36�
0.37�
0.39�
0.40�
0.42�
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0.46�
0.46�
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0.51�
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0.59�
0.70�
0.70�
�
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 �
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 �
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 �
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 �
1.01�
 �
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 �
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 �
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(b)

Fig. 1.  Tracks in multi-plane detector: (a) The configuration for tracks with odd number of hits.  (b) The configuration for tracks with even number of hits.

 



TABLE III

Coefficients for the FPGA Track Fitter (Slope, Odd Hits)

Half-length of the Track�
�
z-z0�
16�
14�
12�
10�
8�
6�
4�
�
�
di�
d[i]�
di�
d[i]�
di�
d[i]�
di�
d[i]�
di�
d[i]�
di�
d[i]�
di�
d[i]�
�
-16�
-5.0�
-5�
 �
 �
 �
 �
 �
 �
�
-14�
-4.4�
-4�
-6.4�
-6�
�
�
�
�
�
�
-12�
-3.8�
-4�
-5.5�
-6�
-8.4�
-8�
�
�
�
�
�
-10�
-3.1�
-3�
-4.6�
-5�
-7.0�
-7�
-11.6�
-12�
�
�
�
�
-8�
-2.5�
-3�
-3.7�
-3�
-5.6�
-6�
-9.3�
-9�
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�
�
�
-6�
-1.9�
-2�
-2.7�
-3�
-4.2�
-5�
-7.0�
-7�
-12.8�
-12�
-27.4�
-28�
�
�
-4�
-1.3�
-1�
-1.8�
-2�
-2.8�
-2�
-4.7�
-5�
-8.5�
-12�
-18.3�
-18�
-51.2�
-56�
�
-2�
-0.6�
-1�
-0.9�
0�
-1.4�
-2�
-2.3�
-1�
-4.3�
-4�
-9.1�
-8�
-25.6�
-16�
�
0�
0.0�
0�
0.0�
0�
0.0�
0�
0.0�
0�
0.0�
0�
0.0�
0�
0.0�
0�
�
2�
0.6�
1�
0.9�
0�
1.4�
2�
2.3�
1�
4.3�
4�
9.1�
8�
25.6�
16�
�
4�
1.3�
1�
1.8�
2�
2.8�
2�
4.7�
5�
8.5�
12�
18.3�
18�
51.2�
56�
�
6�
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2�
2.7�
3�
4.2�
5�
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7�
12.8�
12�
27.4�
28�
 �
�
8�
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3�
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3�
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6�
9.3�
9�
17.1�
16�
 �
�
�
10�
3.1�
3�
4.6�
5�
7.0�
7�
11.6�
12�
 �
�
�
�
12�
3.8�
4�
5.5�
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8.4�
8�
 �
�
�
�
�
14�
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4�
6.4�
6�
 �
�
�
�
�
�
16�
5.0�
5�
 �
�
�
�
�
�
�
Error�
0.79�
0.80�
0.84�
0.84�
0.89�
0.89�
0.95�
0.96�
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1.05�
1.13�
1.13�
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�
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 �
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 �
1.01�
 �
1.01�
 �
1.00�
 �
1.01�
 �
1.00�
 �
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Fig. 2.  The FPGA track fitter.

 



�

Fig. 3.  Relative errors between the least square fit and the FPGA fit.

 



TABLE I

Coefficients for the FPGA Track Fitter (Curvature, Odd Hits)

Half-length of the Track�
�
z-z0�
16�
14�
12�
10�
8�
6�
4�
�
�
ei�
e[i]�
ei�
e[i]�
ei�
e[i]�
ei�
e[i]�
ei�
e[i]�
ei�
e[i]�
ei�
e[i]�
�
-16�
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6�
 �
 �
 �
 �
 �
 �
�
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8�
�
�
�
�
�
�
-12�
1.6�
2�
4.3�
4�
11.3�
12�
�
�
�
�
�
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0�
1.6�
2�
5.6�
5�
17.9�
18�
�
�
�
�
-8�
-1.1�
0�
-0.7�
-2�
1.0�
1�
7.2�
7�
31.0�
31�
�
�
�
-6�
-2.0�
-3�
-2.4�
-2�
-2.6�
-4�
-1.2�
-1�
7.8�
8�
61.0�
56�
�
�
-4�
-2.6�
-3�
-3.6�
-5�
-5.1�
-5�
-7.2�
-8�
-8.9�
-9�
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�
-2�
-3.0�
-3�
-4.4�
-4�
-6.6�
-5�
-10.7�
-9�
-18.8�
-20�
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-40�
-73.1�
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�
0�
-3.2�
-2�
-4.6�
-2�
-7.2�
-8�
-11.9�
-14�
-22.2�
-20�
-48.8�
-56�
-146.3�
-160�
�
2�
-3.0�
-3�
-4.4�
-4�
-6.6�
-5�
-10.7�
-9�
-18.8�
-20�
-36.6�
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-73.1�
-64�
�
4�
-2.6�
-3�
-3.6�
-5�
-5.1�
-5�
-7.2�
-8�
-8.9�
-9�
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�
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-3�
-2.4�
-2�
-2.6�
-4�
-1.2�
-1�
7.8�
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 �
�
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-1.1�
0�
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-2�
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31�
 �
�
�
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0�
1.6�
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18�
 �
�
�
�
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1.6�
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4�
11.3�
12�
 �
�
�
�
�
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8�
 �
�
�
�
�
�
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5.3�
6�
 �
�
�
�
�
�
�
Error�
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3.02�
3.05�
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3.26�
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3.65�
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3.93�
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4.28�
4.29�
�
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 �
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 �
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 �
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1.00�
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Fig. 5.  The algorithm vectors
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Fig. 6.  Relative parameter fitting errors vs. the algorithm deviation
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Fig. 4.  Relative errors of several track fitting schemes.

 



TABLE II

Coefficients for the FPGA Track Fitter (Curvature, Even Hits)

Half-length of the Track�
�
z-z0�
15�
13�
11�
9�
7�
5�
3�
�
�
ei�
e[i]�
ei�
e[i]�
ei�
e[i]�
ei�
e[i]�
ei�
e[i]�
ei�
e[i]�
ei�
e[i]�
�
-15�
6.3�
6�
 �
 �
 �
 �
 �
 �
�
-13�
3.8�
4�
9.1�
9�
�
�
�
�
�
�
-11�
1.6�
2�
4.9�
5�
14.1�
14�
�
�
�
�
�
-9�
-0.2�
0�
1.4�
1�
6.4�
7�
23.3�
24�
�
�
�
�
-7�
-1.6�
-2�
-1.4�
-1�
0.3�
0�
7.8�
8�
42.7�
40�
�
�
�
-5�
-2.7�
-4�
-3.5�
-2�
-4.3�
-5�
-3.9�
-6�
6.1�
10�
91.4�
96�
�
�
-3�
-3.4�
-2�
-4.9�
-6�
-7.4�
-9�
-11.6�
-14�
-18.3�
-14�
-18.3�
-32�
256.0�
256�
�
-1�
-3.8�
-4�
-5.6�
-6�
-9.0�
-7�
-15.5�
-12�
-30.5�
-36�
-73.1�
-64�
-256.0�
-256�
�
1�
-3.8�
-4�
-5.6�
-6�
-9.0�
-7�
-15.5�
-12�
-30.5�
-36�
-73.1�
-64�
-256.0�
-256�
�
3�
-3.4�
-2�
-4.9�
-6�
-7.4�
-9�
-11.6�
-14�
-18.3�
-14�
-18.3�
-32�
256.0�
256�
�
5�
-2.7�
-4�
-3.5�
-2�
-4.3�
-5�
-3.9�
-6�
6.1�
10�
91.4�
96�
 �
�
7�
-1.6�
-2�
-1.4�
-1�
0.3�
0�
7.8�
8�
42.7�
40�
 �
�
�
9�
-0.2�
0�
1.4�
1�
6.4�
7�
23.3�
24�
 �
�
�
�
11�
1.6�
2�
4.9�
5�
14.1�
14�
 �
�
�
�
�
13�
3.8�
4�
9.1�
9�
 �
�
�
�
�
�
15�
6.3�
6�
 �
�
�
�
�
�
�
Error�
2.98�
3.04�
3.13�
3.17�
3.31�
3.34�
3.53�
3.57�
3.78�
3.82�
4.09�
4.13�
4.50�
4.50�
�
Ratio�
 �
1.02�
 �
1.01�
 �
1.01�
 �
1.01�
 �
1.01�
 �
1.01�
 �
1.00�
�




TABLE VI

Coefficients for the FPGA Track Fitter (Offset, Even Hits)

Half-length of the Track�
�
z-z0�
15�
13�
11�
9�
7�
5�
3�
�
�
ci�
c[i]�
ci�
c[i]�
ci�
c[i]�
ci�
c[i]�
ci�
c[i]�
ci�
c[i]�
ci�
c[i]�
�
-15�
-2.2�
-2�
 �
 �
 �
 �
 �
 �
�
-13�
-0.5�
-1�
-2.4�
-3�
�
�
�
�
�
�
-11�
0.9�
1�
-0.2�
0�
-2.6�
-2�
�
�
�
�
�
-9�
2.1�
2�
1.6�
3�
0.3�
0�
-2.8�
-3�
�
�
�
�
-7�
3.1�
4�
3.0�
3�
2.6�
2�
1.2�
1�
-3.0�
-3�
�
�
�
-5�
3.8�
4�
4.1�
4�
4.3�
3�
4.2�
5�
3.0�
3�
-3.0�
-3�
�
�
-3�
4.3�
4�
4.8�
4�
5.4�
7�
6.2�
7�
7.0�
7�
7.0�
7�
-2.0�
-2�
�
-1�
4.5�
4�
5.1�
5�
6.0�
6�
7.2�
6�
9.0�
9�
12.0�
12�
18.0�
18�
�
1�
4.5�
4�
5.1�
5�
6.0�
6�
7.2�
6�
9.0�
9�
12.0�
12�
18.0�
18�
�
3�
4.3�
4�
4.8�
4�
5.4�
7�
6.2�
7�
7.0�
7�
7.0�
7�
-2.0�
-2�
�
5�
3.8�
4�
4.1�
4�
4.3�
3�
4.2�
5�
3.0�
3�
-3.0�
-3�
 �
�
7�
3.1�
4�
3.0�
3�
2.6�
2�
1.2�
1�
-3.0�
-3�
 �
�
�
9�
2.1�
2�
1.6�
3�
0.3�
0�
-2.8�
-3�
 �
�
�
�
11�
0.9�
1�
-0.2�
0�
-2.6�
-2�
 �
�
�
�
�
13�
-0.5�
-1�
-2.4�
-3�
 �
�
�
�
�
�
15�
-2.2�
-2�
 �
�
�
�
�
�
�
Error�
0.38�
0.38�
0.40�
0.41�
0.44�
0.45�
0.48�
0.48�
0.54�
0.54�
0.63�
0.63�
0.80�
0.80�
�
Ratio�
 �
1.01�
 �
1.01�
 �
1.02�
 �
1.01�
 �
1.00�
 �
1.00�
 �
1.00�
�
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