2
Summary of Submission #1028 for IEEE NSS 2003

(
Hash Sorter - Firmware Implementation and an Application for the Fermilab BTeV Level 1 Trigger System

J. Wu, M. Wang, E. Gottschalk, G. Cancelo and V. Pavlicek

Abstract— A hardware hash sorter for the Fermilab BTeV Level 1 trigger system will be presented. The hash sorter examines track-segment data before the data are sent to a system comprised of 2500 Level 1 processors, and rearranges the data into bins based on the slope of track segments. We have found that by using the rearranged data, processing time is significantly reduced allowing the total number of processors required for the Level 1 trigger system to be reduced. The hash sorter can be implemented in an FPGA that is already included as part of the design of the trigger system. Hash sorting has potential applications in a broad area in trigger and DAQ systems. It is a simple O(n) process and is suitable for FPGA implementation. Several implementation strategies will also be discussed in this document.

Index Terms—BTeV, Trigger, Hash Sorter, Firmware.

I. INTRODUCTION
B
TeV is a B-physics experiment that has been proposed to run in the Tevatron at Fermilab.

The core of the BTeV detector is a 30 station Si-pixel inner tracker immersed in a 1.6 Tesla dipole field. There are over 20x106 active rectangular pixels each measuring 50 x 400. Each pixel station has two planes, one with narrow pixel dimension oriented in the x-direction, called “non-bend view”, and the other with narrow dimension in the y-direction called “bend view”. The coordinate data of particle hits measured by the pixel detector are sent to the Level 1 vertex trigger system.

The primary task of the Level 1 vertex trigger system is to select events of interest for B-physics analyses by reconstructing charged tracks and primary interaction vertices and finding tracks detached from the primary vertices.

The track and vertex reconstruction is done in two phases. The first phase is executed by the segment processor. Hits on three adjacent silicon stations are linked together to form track segments, called “triplets”. The segment processor forms two types of triplets, “internal” and “external”, corresponding to the beginning and the end of a track in the pixel detector.

In the second phase, the triplet information is passed to the track and vertex processor, which consists of a farm of embedded processors. The farm matches “internal” with “external” triplets to form complete tracks. The track parameters are used to find primary vertices for tracks that appear to come from a common point in the beam region. The trigger decision is based on the presence of tracks that appear to be “detached” from a primary vertex, since this is a characteristic feature of B particles.

II. Principle and Implementation

A. Hash Sorting for O(n2) Algorithm Acceleration

Matching internal to external triplets is a time-consuming process. Each external triplet is checked against the entire list of internal triplets for possible matches. The process is an O(n2) algorithm. In the BTeV level 1 trigger baseline design, this process is done in C-code and takes significant portion of processing time.

A necessary condition for an internal triplet to match an external triplet is that their slopes in the non-bend view must be approximately equal. One possible solution is to sort the triplets into several bins based on their slopes. With sorted data, each external triplet will only need to be matched to internal triplets in one or two bins, rather than all. Therefore each external triplet will need only to be checked against a much smaller list resulting in a significant reduction of the processing time.

The sorting can be done in an FPGA before the data is sent to the embedded processor. We will discuss this aspect next.

B. Firmware Implementation

A test design has been implemented on the current pre-prototype version of the Level-1 Track and Vertex hardware. This hardware that forms the basic unit of the track and vertex farm consists of four TI 671x Digital Signal Processors (DSP's), three FPGA's and two microcontrollers. Triplet data from the segment processor is received by this hardware after going through an event-building switch. One of the FPGA's on this hardware, acting as a Buffer Manager (BM), sends all the triplet data for one crossing to one of the four DSP's.

 The hash sorting function, as shown in Fig. 1, is performed parasitically in the Buffer Manager. The core part of the block consists of two memory areas, “PointerRAM” “Qa” and “IndexRAM” “Qb”. The “PointerRAM” stores the pointers of triplets. The “IndexRAM” has three bit fields: “bgn”, “cnt” and “endd”, which represent the beginning, the count and the end location of a hash bin. While the triplet data are filling the DATA RAM buffer, the hash bin number “NBin” that represents the non-bend view slope of the triplet is calculated. The ID, or serial number of the current triplet, “T3id”, is also calculated, which is simply the higher bits of the DATA RAM address “A”. The hash bin number and the triplet ID associated with the triplet are used to fill the “PointerRAM” and the “IndexRAM” simultaneously. The following actions are performed in the process:

1. The contents of the IndexRAM at the location associated with the hash bin number NBin are read.

2. If the current triplet is not the first to be filled into the current hash bin, i.e., if the count of the bin “cnt” is not 0, the PointerRAM location, indexed by the “endd” will store the triplet ID, T3id.

3. If the triplet is the first one in the current bin, the ID of the triplet T3id is written into both the “bgn” and “endd” field. Otherwise, “bgn” will be kept unchanged and only “endd” will be update with T3id. In either case, “cnt” will be incremented by 1.

[image: image1.wmf]

S

Qb.bgn

Qb.cnt

Qb.endd

T3id

A

D

NBin

Qa

.idx

DATA RAM

PointerRAM

Index

RAM

Index Table

Sorted Data

The actions above use only 3 clock cycles, given the available time of 4 clock cycles for filling the 4 32-bit data words of each triplet. After these actions, single directional link lists of hash bins are formed in the PointerRAM available for the later stages to use--data are logically hash sorted.

In the next step, data will be downloaded into the DSP via a direct memory access (DMA) process. The data are further physically sorted during the download.

[image: image2.wmf]0

500000

1000000

1500000

2000000

0

2

4

6

8

10

12

Number of Interaction/Beam Crossing

of CUP Clock Cycles

seg_match

seg_match_hash

total

An index table is first dumped into the DSP. The index table will provide the beginning location and the count of the triplets in the sorted data block for each hash bin so that the Level 1 trigger software can access the sorted data efficiently. The table is very ease to produce in fly during DMA.

After downloading the index table, the triplet data are sent out via DMA. The order of presenting the triplet data to the output port is controlled by the link lists stored in the PointerRAM. After DMA, the data stored in the DSP memory become physically hash sorted. The entire download process, including downloading both index table and triplet data block, is completed in a single DMA process. After the DSP started the DMA, no further software intervention is needed.

It should also be pointed out that the PointerRAM and IndexRAM are actually implemented in different area of one physical dual-port RAM block. The process functions of the hash sorting have been so adjusted that this kind of implementation option can be realized. In modern FPGA devices, dual-port RAM blocks are commonly available while the number of blocks per device is still limited. So it is a useful design practice to combine the memories into a single memory block.

C. Results

The hash sorter described above was compiled in our current “Buffer Manager” FPGA device (Xilinx xc2v1000). The logic cell usage is about 7% and the memory block usage is about 10% in the device.

Computation times (in CUP clock cycles) of the Level 1 vertex trigger algorithm for the BTeV baseline design are measured to study the acceleration effects with hash sorting. Simulated events with 2 to 11 interactions per beam crossing are fed to the trigger algorithm. Each of the measurement points shown in Fig. 2 were obtained by averaging the total execution time of the trigger algorithm on roughly 2500 simulated beam crossings.

Two sets of measurements are made. The first set uses unsorted triplet data and the second uses hash sorted triplet data. One can see that the segment matching process has been improved by a factor of 4 to 4.5 by using hash sorted triplet data. For comparison, we also plotted the total trigger process times (that includes segment matching, track processing and vertex finding). One can see that the segment matching process takes a large portion of the entire process.

The timing measurement was performed using a 1.13 GHz Pentium III-M processor. Although the absolute CPU time will be superseded by the fast processors that we will choose in the future, the relative CPU clock cycles should exhibit a similar trend of acceleration with hash sorting.

� EMBED Word.Picture.8 ���

Fig. 1. Block Diagram of the Hash Sorter.

� EMBED Excel.Chart.8 \s ���

Fig. 2. Number of clock cycles needed to process triplets data in a beam crossing are plotted. The triangle points are total clock cycles to process unsorted data. The square and diamond points are ones of segment matching with unsorted or hash sorted data.

J. Wu, M. Wang and E. Gottschalk, G. Cancelo and V. Pavlicek are with Fermi National Accelerator Laboratory, Batavia, IL 60510 USA (phone: 630-840-8911; fax: 630-840-2950; e-mail: jywu168@ fnal.gov).

_1113403202.doc
[image: image1.bmp][image: image2.bmp][image: image3.bmp]





Qb.bgn

Qb.cnt

Qb.endd

T3id

A

D

NBin

Qa

.idx

DATA RAM

PointerRAM

Index

RAM

Index Table

Sorted Data

[image: image4.bmp][image: image5.bmp][image: image6.bmp][image: image7.bmp][image: image8.bmp][image: image9.bmp][image: image10.bmp][image: image11.bmp][image: image12.bmp][image: image13.bmp]
_1114504588.xls
Chart1

		1		1		1

		2		2		2

		3		3		3

		4		4		4

		5		5		5

		6		6		6

		7		7		7

		8		8		8

		9		9		9

		10		10		10

		11		11		11

seg_match

seg_match_hash

total

Number of Interaction/Beam Crossing

of CUP Clock Cycles

28106

7615

64147

69388

16625

138608

128691

28993

237519

213950

43578

371624

321090

63127

528828

450933

82543

723322

549080

103711

863786

695998

125145

1077879

884165

153418

1352159

1061423

182029

1615677

1287236

217073

1924581

Sheet1

		1		56.79		47.24		6.6

		2		122.7		105.6		16.25

		3		210.3		182.6		29.2

		4		329		283.2		47.83

		5		468.2		398.4		67.77

		6		640.3		537.2		96.07

		SEGMENT		MATCHIN		G (WITH HASH		SORTING):

		interac		tions		CPU cycles/e		vent p		roc time/event (us)		tot evts

		1				7615				6.741		2500

		2				16625				14.72		2500

		3				28993				25.67		2500

		4				43578				38.58		2499

		5				63127				55.89		1250

		6				82543				73.07		1243

		7				103711				91.81		1250

		8				125145				110.8		1250

		9				153418				135.8		1244

		10				182029				161.1		1244

		11				217073				192.2		1244

		<2>				18706				16.56		2498

		TOTAL =		SEGMENT		MATCHING + T		RACK PROC		+ VERTEXING (WITH HASH		SORTING):

		interac		tions		CPU cycles/e		vent p		roc time/event (us)		tot evts

		1				43130				38.18		2500

		2				90493				80.11		2500

		3				143955				127.4		2500

		4				208956				185		2499

		5				272194				241		1250

		6				356597				315.7		1243

		7				425995				377.1		1250

		8				523965				463.9		1250

		9				639230				565.9		1244

		10				748100				662.3		1244

		11				873354				773.2		1244

		<2>				93714				82.96		2498

		-------		--------		-------------		---------		-----------------------		---------

		TOTAL:

		interac		tions		CPU cycles/e		vent p		roc time/event (us)		tot evts

		1				64147				56.79		2500

		2				138608				122.7		2500

		3				237519				210.3		2500

		4				371624				329		2499

		5				528828				468.2		1250

		6				723322				640.3		1243

		7				863786				764.7		1250

		8				1077879				954.2		1250

		9				1352159				1197		1244

		10				1615677				1430		1244

		11				1924581				1704		1244

		<2>				155982				138.1		2498

		SEGMENT		MATCHIN		G:

		interac		tions		CPU cycles/e		vent p		roc time/event (us)		tot evts

		1				28106		36041		24.88		2500

		2				69388		69220		61.43		2500

		3				128691		108828		113.9		2500

		4				213950		157674		189.4		2499

		5				321090		207738		284.3		1250

		6				450933		272389		399.2		1243

		7				549080		314706		486.1		1250

		8				695998		381881		616.1		1250

		9				884165		467994		782.7		1244

		10				1061423		554254		939.7		1244

		11				1287236		637345		1139		1244

		<2>				82845				73.34		2498

		TRACK P		ROCESSIN		G:

		interac		tions		CPU cycles/e		vent p		roc time/event (us)		tot evts

		1				26849				23.77		2500

		2				54010				47.81		2500

		3				80023				70.84		2500

		4				103599				91.71		2499

		5				129784				114.9		1250

		6				166274				147.2		1243

		7				178950				158.4		1250

		8				205900				182.3		1250

		9				235695				208.7		1244

		10				259728				229.9		1244

		11				285531				252.8		1244

		<2>				53668				47.51		2498

		VERTEXI		NG:

		interac		tions		CPU cycles/e		vent p		roc time/event (us)		tot evts

		1				7480				6.622		2500

		2				18361				16.25		2500

		3				32984				29.2		2500

		4				54031				47.83		2499

		5				76547				67.77		1250

		6				108517				96.07		1243

		7				143397				126.9		1250

		8				185614				164.3		1250

		9				241365				213.7		1244

		10				298107				263.9		1244

		11				360255				318.9		1244

		<2>				20662				18.29		2498

		SEGMENT		MATCHIN		G + TRACK PRO		CESSING:

		interac		tions		CPU cycles/e		vent p		roc time/event (us)		tot evts

		1				53361				47.24		2500

		2				119260				105.6		2500

		3				206221				182.6		2500

		4				319881				283.2		2499

		5				449988				398.4		1250

		6				606842				537.2		1243

		<2>				137335				121.6		2498

		TRACK P		ROCESSIN		G + VERTEX FI		NDING:

		interac		tions		CPU cycles/e		vent p		roc time/event (us)		tot evts

		1				34428				30.48		2500

		2				75080				66.47		2500

		3				113997				100.9		2500

		4				158134				140		2499

		5				205857				182.2		1250

		6				270861				239.8		1243

		<2>				74370				65.84		2498

Sheet1

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

total

tracking

vetexing

Number of crossing

Time (us)

CPU Timing Pentium Laptop

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

total

total_hash

nonseg

Number of Interactions/Beam Crossing

Number of Clock Cycles

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet3

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

seg_match

seg_match_hash

total

Number of Interaction/Beam Crossing

Number of CUP Clock Cycles

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

		

		

