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Particle Physics Today: 
Three Frontiers of Science
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Cosmic Rays:  A 100 year old mystery

Victor Hess
Nobel Prize

1936

Balloon flights
1911-1913

•Power law over many decades
•Origin Uncertain

Cosmic ray spectrum

Tuesday, February 9, 2010



Cosmic Rays:  A 100 year old mystery

Victor Hess
Nobel Prize

1936

Balloon flights
1911-1913

•Power law over many decades
•Origin Uncertain

Cosmic ray spectrum

Tuesday, February 9, 2010



Neutrinos as Cosmic Messengers

Protons: deflected by 
magnetic fields. 

p

Photons: easily 
absorbed by CMB 
and IR backgrounds. 
EM/Hadronic 
discrimination 
difficult 

γ

Neutrinos: not 
deflected by 
magnetic fields. 
Low interaction 
cross-section.

ν
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Sources of High Energy Astrophysical 
Neutrinos

Supernova Remnants 

Active Galactic Nuclei

Gamma Ray Bursts
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ν beams : heaven and earth
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• Main Background to Astrophysical Search

• Created by high energy cosmic rays impeding 

on Earth’s atmosphere

• Conventional (Pions & Kaons) vs. Prompt 

(Charmed Mesons) 
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Flux Model Predictions

Tuesday, February 9, 2010



Flux Model Predictions

Tuesday, February 9, 2010



Flux Model Predictions

Diffuse Search Strategy:
What if there are no individually resolvable point 
sources of νs? Look for superposition of faint ν 

sources
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IceCube

South Pole Station

Skiway

IceCube outline

Geographic South Pole
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AMANDA

19 Strings

677 Modules

first data 2005
upgoing muon 18. July 
2005

IceTop 

InIce 

Air shower detector

threshold ~ 300 TeV

80-86 Strings,

60 Optical 

Modules per 

String

Completion:
January 2011
2008: 40 
Strings (This 
Analysis)
2009: 59 
Strings

2010: 79 
Strings

Deep Core

The IceCube Detector
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Digital  Optical Module

Photomultiplier Tube

MainBoard
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µ

•   Cherenkov cone provides direction

ν
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Event Topologies
• νμ produce μ tracks

• Angular Res ~ 0.70 Eres log(E)~0.3

• νe CC, νx NC create showers 

• ~ point sources, ’cascades’ 

• Eres log(E)=0.1-0.2

• ντ double bang events, others

Muon – IC 40 data

16 PeV ντ simulation
350 TeV νe  simulation
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IceCube performance
Low noise rates: ~500Hz (SPE/

sec)      

High duty cycle: >96% 

Event rates (59 strings)

• Muons: ~1.5 kHz

• Neutrinos: ~160/day

Strings Year Livetime μ rate ν rate

IC9 2006 137 days 80 Hz 1.7 / day

IC22 2007 275 days 550 Hz 28 / day

IC40 2008 ~365 days 1000 Hz 110 / day

IC59 2009 ~365 days 1500 Hz 160 / day

IC86* 2011 ~365 days 1650 Hz 220 / day
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Astrophysical 
(signal) ν

Atmospheric ν

Atmospheric µ

Cosmic ray

ν

µ

θ = 180o

θ = 0o

cos θ = 1

cos θ = -1

Tuesday, February 9, 2010



19

Astrophysical 
(signal) ν

Atmospheric ν

Atmospheric µ

Cosmic ray

ν

µ

θ = 180o

θ = 0o

cos θ = 1

cos θ = -1

Tuesday, February 9, 2010



20

Step 1: Downgoing Muon 
Rejection

•  Apply quality cuts on Data,  Corsika MC, 
and Atmospheric Neutrino MC
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Energy Distribution - 6 Months 
40 String Data

log10(dE/dX)
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Step 2: Diffuse Analysis Strategy
• Find an excess of astrophysical neutrinos   (E-2) 

over atmospheric neutrinos (E-3.7) at the high-
energy tail of an energy distribution
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Energy Estimation

• Convert what is measured, Cherenkov light, to an estimate of the Muon energy.

• Simplest estimation: Number of Triggered Optical Modules (NCh) 

• More Sophisticated: Muon Energy Loss (dE/dX) 

e+e-

π

γ

µ

pair-creation

bremsstrahlung

photo-nuclear

Bremstrahlung

Pair Production
Photonuclear

μ
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 Reconstructing The Muon Energy Loss 
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Approximate as:

 Reconstructing The Muon Energy Loss 
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Approximate as: du
st

y
cl

ea
n

deepshallow

Incorporate Ice Properties:
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Muon Energy Correlation – 40 Strings

•dE/dX reco more linearly correlated with Muon 
energy

dE/dX Reco NChannel
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Energy Resolution – 40 Strings

Width 
0.27

Width 
0.43

•dE/dX reco has narrower energy resolution
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Energy Resolution Vs. Muon Energy – 40 
Strings
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Likelihood Methodology

Atmo ν

• Likelihood - Product over binned Poisson Probabilities:

Prompt ν Astro ν
• Observable: Muon Energy Loss dE/dX

• Physics Parameters:

‣ Astrophysical Normalization (Na)     

•Nuisance Parameters:

‣ Conventional Normalization (Nc)

‣ Prompt Normalization (Np)

‣ Detector Efficiency (ε)

‣ Conventional Spectral Slope (Δγc)

‣ Prompt Spectral Slope (Δγa)

µi = ε (Ncpc,i∆γc + Nppp,i∆γp + Napa,i∆γa)

L = P ({ni} | {µi}) =
k∏

i=1

µni
i

ni!
eµi
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Fit Example: IC40 Discovery Potential 
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Fit Example: IC40 Discovery Potential 
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Allowed Regions - 300 Days IC40 
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Allowed Regions - 300 Days IC40 

5 Sigma: 
E2  = 7.0 x 10-8 GeV cm-2 s-1 sr-1 
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Allowed Regions - 300 Days IC40 

5 Sigma: 
E2  = 7.0 x 10-8 GeV cm-2 s-1 sr-1 

5 Sigma (w/ charm assumption): 
E2  = 3.9 x 10-8 GeV cm-2 s-1 sr-1 
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LLH Fit Example: 300 days IC40, No 
Signal

“Data” Poisson Sampled from MC
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 Allowed Regions - 300 Days Atmospheric ν only
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IC40 Diffuse Sensitivity: 

E2  < 1.17 x 10-8 GeV cm-2 s-1 sr-1 

 Allowed Regions - 300 Days Atmospheric ν only
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Flux Models, Sensitivities & Limits

IC40 Sensitivity
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Flux Models, Sensitivities & Limits

IC40 Sensitivity

IC40 Diffuse Sensitivity: 

E2  < 1.17 x 10-8 GeV cm-2 s-1 sr-1 

3.57 < log10(E /GeV) < 6.57
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Atmospheric ν systematic uncertainty

Honda 2006 Favored, 
used in analysis 
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Atmospheric ν systematic uncertainty

• Sarcevic Std pQCD used in analysis. 
• Nuisance Parameters fit for 

deviations
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Atmospheric ν systematic uncertainty

• Sarcevic Std pQCD used in analysis. 
• Nuisance Parameters fit for 

deviations

Phenomenological 
Naumov model disfavored 

Δγ +/- 0.03
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Systematic Uncertainties in the 
Simulation

• Uncertainties in neutrino cross-section (3%)

• Uncertainties in muon energy loss (1%)

• Reconstruction & Cut bias (2%)

• Background Contamination (0.5%)
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Systematic Uncertainties of the Ice properties

• Uncertainty in scattering and absorption +/- 15%

• Systematically vary ice properties in the simulation to 
get effect on sensitivity & final limit (underway)

Scattering Absorption
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Outlook & Conclusion

• IC40 Sensitivity is 
E2  < 1.17 x 10-8 GeV cm-2 s-1 sr-1

• Finish Systematic Ice Property Study

• Unblind full year of IC40 data

• Incorporate multi-channel information in future 
analyses. 
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