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Overview

« NPDGamma Experiment motivation
o Experiment setup at LANSCE

e Experiment apparatus

 Liquid Para-hydrogen Target

* Analysis result of LH, target data

e Current Project status
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Weak Interaction
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1. Parity-Violation = hadronic weak interaction isolated from the much larger
effects of the strong and electromagnetic interactions (which conserve parity).

2. Heavy boson exchange (W*, Z) at low momentum transfers = very short range
~0.002fm -> probe quark and quark interaction and correlation at small distance.

3. Weak - not significantly perturb QCD, an “inside-out” probe of strong QCD.

NPDGamma study the flavor-conserving
nonleptonic weak interaction.
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Weak gq = Weak NN

What is the weak NN interaction?

Strong NN interaction, mediated by mesons,
long range ~ 1 fm

Quarks close ~ 0.001fm-> the weak interaction acts

Quark-quark weak interaction induces NN weak interaction.
Visible using parity violation.
Relative weak/strong amplitude: ~[e?/m?,]/[g%/m? ] ~107

What can we learn?
4s = 1, nonleptonic weak interactions [41 = Y2 rule, hyperon decays not understood] .
Q: specific to the strange quark, or a general feature in the nonleptonic weak
interactions of light quarks?

To answer, must look at the As = 0 nonleptonic weak interactions (u, d quarks).
Weak NN interaction is one of the few experimentally feasible systems.
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Theory
Meson Exchange Model (DDH) N

(B. Desplzimques, J.F. Donoghue and B.R. Holstein, Annals of Physics, 124:449-495, \)\/
1980

« Atlow energies N-N weak interactions modeled as meson '

exchange with one strong PC vertex, one weak PV vertex. N |

* Due to hard core repulsion - n-p interaction range ~ 1.5 fm -2 =P q
Mesons are the appropriate degrees of freedom.

I
« The weak PV couplings contribute in various mixtures and a
variety of observables: %(\
1 0 1 1 2 0 1
f..h ,h . h h’ h, h, N

to be determined by experiment.

Other Approaches
Recently, an Effective Field Theory* has been developed to calculate the NN weak

interaction.
* Zhu, Maekawa, Holstein, Ramsey-Musolf, and Van Kolck, Nucl. Phys. A748, 435 (2005)
* C-P. Liu, Phys. Rev. C 75, 065501 (2007)

Very recently, the NN interactions (including weak) is included as a goal for extreme
computing to calculate directly from QCD using lattice QCD. **
** Summary Letter Report -Nuclear Physics Workshop Jan 26-28, 2009, Washington D.C.
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A Parity-violating Gamma-ray Asymmetry

Directional distribution of
gamma-ray essmission in:

ffhp—>d+y

dw
d—Q(st) oc1+ A coso,

A, =-0.107 f . —0.001h; —0.004h;, *
f*.ht h~107°

r?! plw

1S mostly 1sotropic but also
depends on the angle 6y,
betwien neutron spin  and phigton
momentum

As =0, Al =1
Ay is a measure of
neutral current weak hadronic

interaction.
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Simple Level Diagram of n-p System
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v asymmetry
signal
s 5,1=0) | *Rut=1) [Pl =g

p‘ﬁﬁ"p —d+ y is primarily sensitive to the A/= 1 component of the weak interaction

« Weak interaction mixes in P waves to the singlet and triplet Mixing amplitudes:
S-waves In initial and final states. <3 3 > -

« Parity conserving transition is AM1. S V| "R Al =1

) : . : : 3 1\

. Parity violation arises fror.n. mixing in £ states and < S, My P1>,A| -0
interference of the E£1 transitions.

« A is coming from 35; - 3P, mixing and interference of £1- <1S Vi | 3P >'A| _9
MIltransitions — A/ = 1 channel. Of"Wj| 70/
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Why Neutral Current?

e Atlow energy H,,.. takes a current-current form with charged and neutral
: G
weak current: H, ... ~ =33y + 3y dy +333,) ‘Where

2

Ju ~ Uy, (L+ys)dcosd, +uy, (L+ys)ssing, ;

1) = Gyﬂ(1+ 7/5)u—|—ay/ﬂ(l+ 7:s)d +§7/ﬂ(l+ ¥:)S —4sin’ HWJEM ;

e JyhasAl="%,1terms,

Al =% currents 2> H,.,~" 7, but H,,., 2"~ is Cabbibo suppressed (by
sinZ6, ).

Al =1 currents 2 H,,.,*~% 2, but since the Hamiltonian is Hermitian,
Al =1 components from both JW *Jy and Jy, Jy,* have opposite sign.

—> Charged currents contribute to H,,.,,2~% 2, but not H,., A"

e J,hasAI=0,1terms 2 H,,2~% 7.

weak
Neutral current primarily contribute to H,,., >~
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n+p->d+y Experimental Setup at LANSCE
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A Gamma-ray Asymmetry Measurement

- [\ ,\_U - (U _D) /AI_.. : A"])
*\rﬁéwgggss.m.t.mrwewed v =Nee
1. One detector + fI|p Aeutr

2. A pair of o posf’evﬁg?eg:?g?@armwﬂﬂlﬁft'fﬁﬂﬁﬂg neutron spin;

=> A pair

900

* Reverse the polarization pulse-by-pulse to compare signals |

* Flip neutron spin according to the sequence 1/|1/11
guadratic time-dependent gain drifts.

e Goals: ~ 108, experiment error ~ 10°.
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Beam Monitor (lonization Chamber

0.5 mm Al electrodes

Current
Signal

1 mm Al Housing




Optically-Polarized 3He Neutron Spin Filter

A 3He cell contains 3He, Rb, and N.,.
Rb vapor is polarized using circularly polarized laser light.

Rb electron and 3He nucleus exchange spin through the hyperfine interaction.

barns @ 10 meV

barns
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Radio Frequency Neutron Spin Flipper

In a DC magnetic field B,, a resonant RF magnetic field (B,cosat) is applied for a time
T = /(yB,), to precess the neutron spin around B, by =.
» B,(t) «1/TOF, for reversing neutron spin in wide energy range.

e Dummy load with the same impedance as the coil to keep the load on the main power
circuit constant and minimize pickup of the spin flipper on-off switching in other cir

 Grad. 0B,/ 0z <1 mgauss/cm = no Stern-Gerlach steering force (u.VB) = no f
asymmetry.

« High maximum spin reversal efficiency, ~ 98.040.8% for 3.3 to 18.4 meV.

B
Beam 0
—_ RFSF L»

Amplitude (A)

150 180 190

time (ms)

110 160 170

120 130 140
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Current Mode Csl Detector Array

Battery

" Housing

e Cslcrystal

e Vacuum photodiodes (VPD)

* Low noise solid-state preamplifier.

e 152 x 152 x 152 mm3

* The array covers a solid angle of 3.

Preamp

» Detection in current mode, pulse counting
impossible. The peak y rate into a single
detector ~ 100 MHz; the decay time of the
scintillation light pulse ~ 1 ps (1 MHz). CsI(TY)

o Use sum + difference amplifier.
(1) the average signal in a ring.

(2) the difference in each detector from the
average.

* Low noise, measurement accuracy L | 65 |
dominated by counting statistics. e
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Experiment Setup Guide Field

whole setup contained in 10 Gauss guide field.
To prevent Stern-Gerlach steering of neutrons:
require field gradient <1 mGauss/cm.

To prevent left-right asymmetry to produce a
false up-down asymmetry:

the direction of the field respect to detector at
target position has to be know with accuracy of
20 mrad.
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Liquid Para-hydrogen T



Design Goal

. Target must absorb as much polarized cold neutrons as possible.
Monte Carlo simulation = Target size of 30 cm diameter and 30 cm
length = absorbs 60% cold n’s.

. To prevent neutron depolarization requires para-hydrogen, ¢
neutron (<15meV) - Para- X> Orth-H, & flip neutron spi
K = 0.05% of LH, is in ortho state = 1% of neutrons

nnnnn

O
1N {}ﬂD

para
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Safety Feature of the LH, Target

* Triple Containment — hydrogen has to be separated by three barriers before
reaching oxygen (Air). Al target vessel (1% containment) inside an isolation
vacuum (2"d containment) and then Al vacuum chamber (3" containment).

* Helium channels around the joints of main vacuum chamber are used for
fast detection of any leak from air to main vacuum.

» Fast warm up of target in emergency
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Schematic of the LH, Target

4 GHS Control & LH
Vent N i Ver%t
Line Line
Warning & Alarm Relief
System System
GHS Enclosure
Gas Handling 1 Target Cryostat
System
LHe Pre-
LN, ‘ ‘ | Upper
TRAP < g Cooler & | Refrigerator
'y OPC1
v A 1 OPC2
A Vacuum
System & ' ' v
<+ Refrigerator
H, Supply Vessel g
Manifold He Channels [

Vacuum Enclosure

OPC = Ortho-H, to Para-H., Converter




Al Target Cryostat

The target vessel

Cold heads of refrigerators
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Target Vessel

e AIG6061-T6

 Two weld seams — joints of the
two shaped end caps.

e SLj-rich flexible plastic
neutron shield.

e Thin copper radiation sheild
« Superinsulation

o Thermally insulated support
structure — two G-10 rings

o SST(304) fill/vent line —
sufficiently nonmagnetic and
low thermal conductivity.
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Pictures of LH, Target at LANSCE
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History of Para-hydrogen
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Some Results



Chlorine Results

A, cos(6) + A . sin(B)

Measured Chlorine Asymmetry
(in units of 107)
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Experiment First-phase Run

5
8, = 2.1x 107 A,
4 Up-Down Left-Right
Al (—0.02£3) x 107 (—2£3)x 10~
g CClL  (-19£2) x 1076 (-1£2)x 10
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g | Cu (-1£3) % 107% (0.3£3) % 107
- | | In (=3£2)x 106 (34£3)x 107"
|
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Instrumental Systematic Effects

Csl Detector Array:

. Multiplicative systematic error (Gain shifts) = Magnetic field leaking into
VPDs - llluminate detectors by light emitting diodes to measure gain shift,
accuracy of 0.1x10-%in 1 day.

. Additive systematic error - Any electronic pickup - beam off non-zero up-
down asymmetry. Accuracy of 0.1x108 in ~1 day.

RFSF:

. A spin flip pattern ‘1| [1111]’ of pulse eliminates 1st & 2nd-order time-
dependent detector-efficiency drifts.

. RF field is shielded by aluminum cover = skin depth ~0.5 mm.

. A change in the kinetic energy of neutron = Entry and exit static field
different > Less than 0.2 uT - Less than 10-1°,

3SHe Polarizer:

. Spin reversal in 3He polarizer = change in static magnetic field (~1x10-° gauss)
- at y-detector, efficiency change ~ 2x10-1%,
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Beam-dependant Systematic Errors

Reaction Correlation Pattern PV? TOF | Size
n+p>d+y S, K, U-D Yes to 5%10°9
n+p-2>n+p (scattering shift) K, .S, xK, L-R No t-1 251010
n+p->d+y (Csoto & Gibson) K, . Spx kK, L-R No t-2 2%10-11
n+p->d+y (magnetized iron) SHRH U-D No t° 1x10-10
n=>p+e+v, (beta decay) S, Ke U-D Yes to 3x10-1
n+d->t+y (D, contamination) Sn- K, U-D Yes t° 1x10-10
n+p=>n+p (Mott-Schwinger) K’ . Sy xK, L-R No t-28 1x10-0
n+°Li->a+t (Li-shield) S,. K, U-D Yes to 2x10-1
(u,-V)B (Stern-Gerlach) S,.V)B U-D No tt 1x10-10
n+A>A+1l+e+v, S, Ke U-D Yes Varies | <1010

Table from: W. M. Snow et
2001, pp. 203-213.
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Experiment Modification for SNS

Related to the Target:

e Reducing the upstream main vacuum inner and outer windows.
(0.12 in - 0.06 In).

* Reducing the upstream target vessel thickness.
« Larger OPC to reduce the conversion time.
e Adding one more refrigerator to reduce the cooling time.

e Adding more temperature sensors to determine the liquid
hydrogen level.

Other major modification:
« 3He Polarizer = Supermirror Polarizer.
e 20Hz - 60Hz
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Status & Plan

e The experiment ran successfully in 2006.

» LH, target data have been analyzed, to be published
soon.

» LH, target modifications are in process at IUCF.
» Beam line construction in SNS is done.

e Su
e Ta

permirror polarizer and B-coil have been installed.
Ke more runs on Al target to get a better limit.

e LH

, target will be shipped to SNS and start to take

data in 2010.
e Goal at SNS is ~108
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Constraints on Weak N-N Couplin

" Previous determinations of vB2H g

1°

| NPDG
Cavaignac et al. 1977

NPDy - 1000 hrs (LANSCE)

¢ |

NPDy - Goal (SNS)

- |
A ZmZ— oMmMmTXMm

Skyrme model / Meissner & Weigel 1999

QCD sumrules / Henley et al. 1998

4PT (strangeness)
Kaplan & Savage 1993 B
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Importance of a precision measurement of f_'?

« A precision value of f ! is necessary to understand and interpret the
measurements of parlty violating observables in complex nuclei.

« f 1isthe most important weak coupling in the determination of the
complete set of the couplings in the weak meson-exchange potential for a
two-nucleon system.

* Interpretation of parity-violating phenomena in finite nuclei will be reduced
to understanding the nuclear structure of the states involved.

 Stimulate further theoretical work to calculate f_* and other weak couplings,
starting from standard model description of wea ak interactions and a QCD
description of the strong interaction.
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The NPDGamma Process

Study the hadronic weak

interaction between spin-— - N |
polarized neutrdfif Bk d + y c+§ « — ?
n p d

protons in the

reaction.

Measure A, the parity-violating
asymmetry in the distribution of

Igmlgttedgl_.z Me%/ Y'S. " / é
arity Iransrormation | |
¥ (F)— ¥ (-F) C#‘ @ =P

up/down vy rates differ
—> Parity is violated. |

dw
——oc1+ A cosé
dQ m A;/ 317

the correlation between neutron spin and photon momentum <§n 'Ey>
is odd under parity transformation ( k, changes sign, S, does not)
-- ameasure of As =0, Al =1 neutral current weak hadronic interaction.
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* Pulsed beam: neutron time—-of-
flight determines neutron velocity,
energy

* PV asymmetry 1s independent o
energy

* Very slow neutrons can o
with faster neutrons fr
pulse

* Chopper rotor

Normalized Monitor Signal
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Neutron Transmission Measuremen
Polarization Analysis
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Hydrogen Pressure during 2006 Nov-De
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Pressure in the Vessel During Ve
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Neutron Transmission thro
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Fraction of Para-hydrogen
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NPDGamma OPC
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