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Searching for the Standard Model Higgs 
Boson in the Missing ET and b-jets 

Signature
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The Standard Model Higgs Boson

• Unification of the electromagnetic and weak interactions based on
gauge symmetry

• W/Z vector bosons, generators of the gauge transformations, remain massless

• Solution provided by the Higgs mechanism

• Introduces a complex scalar doublet that represents a self-interacting 
scalar field

• Due to a spontaneous symmetry breaking in the ground state, three of the 
four real fields have no mass

• Fixing the gauges of the three EW vector bosons with the three massless
components of the Higgs field, the gauge bosons become massive

• The remaining massive, forth component of the complex doublet is called 
the Higgs boson
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• Important properties:
• The mass of the Higgs boson:

• Mass of the gauge bosons:

• where “ν” is the vacuum expectation value of the Higgs field

• By measuring the Fermi GF constant, the Weinberg angle θW , and the fine structure constant, 
the masses of the gauge bosons can be determined

• No information on Higgs mass - λ is still a free parameter

• The fermion-Higgs interaction term:

Predictions from the Higgs Mechanism 
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Indirect Higgs Searches
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Indirect Higgs Searches
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• With precise measurements of the parameters                    , the SM 
Higgs mass can be estimated

• Direct searches are currently performed at Tevatron

• Last LEP result was mH>114.4 GeV with 95 % C.L.
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Higgs Searches at the Tevatron

• Tevatron: currently only place for direct 
Higgs searches

• Proton-antiproton collider
• higher occupancy in the events
• larger background

• Run I (1992-1996) with √s = 1.8 TeV
Integrated luminosity 120 pb-1

• Run II (2001-present) with √s = 1.96 TeV
Integrated luminosity by November ‘06:

• Delivered > 2 fb-1 / Recorded > 1.6 fb-1

• Higgs analyses use up to 1 fb-1

• Design goal of 8 fb-1 by 2008

• How long can we run? How much time we have until LHC starts?

• How much data can we collect ? – Tevatron and detector performance

Main Injector
and Recycler

⎯p source

Booster

CDF D0
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Performance of the Tevatron
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• Tevatron performance is improving

• CDF data taking efficiency is ~ 85 % - 90 %

• Due to the increased initial instantaneous 
luminosity, we experienced higher dead-times

• High instantaneous luminosity:
• event occupancy is higher
• increased number of multiple interactions 
(multiple vertices)
• trigger level reconstruction is deteriorated

• Need to upgrade triggers and redesign online 
selection
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Gluon fusion
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SM Higgs Production at Tevatron

• Highest cross-section at all Higgs masses

• Dominated by top-loop due to large top mass

• Cross-section sensitive to new heavy particles

Vector boson fusion • Relevant at high Higgs masses

• Not relevant at the Tevatron, but important 
at the LHC

• Forward jets provide unique signature

Jet

Jet

Tevatron:
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Associate production

SM Higgs Production at Tevatron

• Cross-section is only an order of magnitude below the 
gluon fusion at Tevatron

• Decay products of Z/W provide a handle to separate 
signal from h.f. dijet events

• Somewhat unique to the Tevatron – advantage at low 
Higgs masses
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W*/Z* W/Z

Ho

ttH

• Very small cross-section at Tevatron, but 
promising channel at LHC

• Provides additional sensitivity to other 
searches at the low mass region in CDF

LHC:
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• Low mass SM Higgs (<135 GeV)

• Decays to b-quarks

• ZH/WH searches are favored

• Photon branching ratio is lower by a 
factor of ~400 → limited sensitivity in 
the H→γγ search

• High mass SM Higgs (>135 GeV)

• Decays to W/Z-bosons

• WW/ZZ searches are favored with 
leptons in the final states  

• With the luminosity achievable at the 
Tevatron, no single search is sensitive to 
the light Higgs

• Channels must be combined

Low / High  Mass

Decay Channels of the Higgs Boson
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Direct SM Higgs Searches in CDF
ZH → l+l- bb

2 b jets + 2 leptons 
Z mass constraint
Cleanest signal

WH → lν bb

2 b jets + 1 lepton  
Highest production cross-
section

ZH → νν bb

2 b jets + Missing ET
0 leptons
Highest sensitivity
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2 leptons + Missing ET
2 leptons are parallel
Very clean signal, large cross-section

• Highest sensitivity for Higgs beyond 130 GeV
• Currently the closest to be able to exclude the 
Higgs boson

gg→H→W+W-→ νν l+l-

H
ig

gs
 M

as
s <

 1
35

 G
eV

H
ig

gs
 M

as
s >

 1
35

 G
eV



December 12, 2006 Fermi National Accelerator Laboratory 12

Missing ET
b-jet

b-jet

y

x

• Basic Selection cuts:
• 1st Jet ET > 35 GeV
• 2nd Jet ET > 20 GeV
• No other jets with ET> 20 GeV
• At least one jet is central
• Missing ET (MET) > 55 GeV
• No leptons (electron or isolated track)
• 1 or 2 tight b-tag(s)

Higgs in the ET+b-jets Final State

• Higgs processes leading to missing ET and b-jets:
• ZH → νν bb
• WH → lν bb (where l is not identified)
• gg → H → bb – missing ET too low, analysis is 
not feasible

• Events with isolated tracks or electrons are discarded to 
avoid overlap with the dedicated WH search

Distinctive event topology
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Schematic Diagram of the (Blind) Analysis
DATA SIMULATION

Particle Collisions

Data Acquisition (Triggers)

Production/Event Reconstruction

Jet / Missing ET Corrections

Pre-selection
Trigger Efficiency Studies

Monte Carlo Event Simulation

Detector Simulation

Production/Event Reconstruction

Jet / Missing ET Corrections

Re-weighting events by 
Trig.Eff. and Cross-section

Control Region 
Studies

Control Region 
Studies

Validating the simulation
in the control regions

Calculating final result in the
signal region (95% C.L. exclusion)

Optimizing Signal Selection
(cuts based on S/√B, Neural Net)

Compatible 
Observables

1. 2.

3.

4.5.

Correct 
Normalization
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• The Missing ET is the total missing transverse momentum from the Electromagnetic and 
Hadronic calorimeters.
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• After offline jet-corrections, the clustered part of the Missing ET (represented by the jets) 
is also corrected:
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where Ex and Ey are the x and y projections of the jet 
energies

• The magnitude and direction of the Missing ET provide 
the most significant difference between the signal and 
other heavy-flavor Standard Model backgrounds
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Missing ET
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b-jet
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1. Definition of the Missing ET
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• Origin of Missing ET in an event

• “Real”; a weakly interacting particle, such as a 
neutrino, escapes detection

• “Instrumental”; the transverse momentum of an 
object is mismeasured

• muon
• jets – esp. in QCD background

• Beam effects – eliminated by quality cuts

• These effects increase or decrease the missing ET
depending on the kinematics

• e.g. MET in W → eν bb is higher than in 
W → μν bb !!!

• MET in the signal is much lower than the Z mass

 (GeV)TE
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b bνν → in ZHTE

MET in ZH → vvbb events

1. Origin of the Missing ET

Data used in Higgs search
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• CDF has a 3-level online data selection system

• Each level performs a slower but more 
accurate event reconstruction

• At the current instantaneous luminosity, the 
Level 2 output rate is too high

• Using the MET35_TWO_JET10 trigger:

• Level 1: L1_MET > 25 GeV

• Level 2: 2 clusters with ET>10 GeV

• Level 3: L3_MET > 35 GeV

• Large systematic uncertainty from the Level 1 
Missing ET

• Missing ET is not reconstructed at Level 2

“Turn on” is different for real and 
for instrumental missing ET

1. Triggering on Missing ET
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• Efficiency is a function of the two-jet and the MET 
requirements: ε(jet 1, jet 2, ET)

• Assume: two-jet requirement is not correlated with 
MET: ε(jet 1, jet 2, ET) = ε(jet1, jet2) . ε(ET)

• Trigger efficiency is expressed as a function of 
Missing ET after requiring offline:

• 1st Jet ET > 35 GeV
• 2nd Jet ET > 20 GeV
• One jet is central
• Consider the two-jet requirement fully 
efficient ε(jet1, jet2) = 1.0

• Small systematic uncertainty from the L3 MET

• The final Missing ET selection (after optimization) 
is ET >75 GeV, where the efficiency is 0.97±0.03

“Turn on” is independent of the 
origin of the Missing ET

1. Efficiency of the MET35 trigger
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35% loss at trigger level

Corrected Missing ET of the SM Higgs
ZH → ννbb, MH=120 GeV
(arbitrary normalization)

• Trig.Eff. for QCD dijet h.f. is 
determined from a Jet-data sample 
(MET is instrumental)

• Trig.Eff. for the signal is calculated 
using a High PT muon sample 
(MET is physical)

• Red full histogram shows the signal 
after applying the trigger efficiency

• Trigger is very inefficient

• Loss in acceptance is ~15 % due to 
avoiding large systematic 
uncertainties in the trigger turn-on

• ~35% of signal loss is due to the 
online data selection

• Total 50% trigger related loss in 
signal yield

Trigger eff.

Currently used in analysis

15% loss

1. Re-weighting with the Trigger Efficiency
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1. Improving the Trigger Level Missing ET

Efficiency of a Met > 15 GeV cut 
calculated with different granularities

Efficiency of a Met > 25 GeV cut

• With a modification at L1 a sharper turn-on is feasible
• With the L2 upgrade, the full calorimeter information is available for clustering and Met 
calculation (blue curve) → accuracy nearly equivalent to L3
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• QCD dijet: 2 h.f. jets + missing energy

• Missing ET is instrumental (due to jet energy mismeasurement)

• Cross-section 109 times larger than ZH production

• Missing ET is generally smaller than in the signal events (instrumental)

• “Electroweak”: unidentified leptons + h.f. jets + missing energy

• Missing ET from missing lepton and/or mismeasured jets

• W + 1/2 h.f. jet(s) – 500 times the signal
• W(-> e/μ, ν) + cq/bb/cc

• Z + 2 h.f. jets – 50 times the signal
• Z(-> l+ l-) + bb/cc  (l: tau/muon)
• Z(-> v v) + bb/cc – irreducible background, similar to the signal
• Z-> τ τ

• Z-> bb – similar to QCD background

2. Standard Model Background
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• Top/Single Top: 2 b-jets + missing energy

• Missing ET is from decay products of W from the top decay

• ~10 times the signal

• Higher jet multiplicity

• Jets are more energetic

• Diboson : unidentified lepton + 2 taggable jets + missing energy

• WW, WZ, ZZ

• One boson decays leptonically, the other hadronically

•~ 5 times the signal before lepton veto

• ZZ → νν bb is irreducible

• Simulation is a technical challenge due to the large cross-section of SM 
background

2. Standard Model Background



December 12, 2006 Fermi National Accelerator Laboratory 22

2. Monte Carlo Samples (1 fb2. Monte Carlo Samples (1 fb--11 run range)run range)
Luminosity in 
blessed results  (fb-1)

Luminosity being 
generated (fb-1)

Pythia

~ 276380

~ 105136

~ 3041.6

~ 1Not simulated

~ 944.5

~ 1811.5

~ 6 22.8

~ 622.8

~ 312.2

~ 122.3

~ 212.2

~ 233~ 200

~ 1~ 5QCD h.f.

ZZ
WZ
WW

bbZ
Z
Z
Z

eeZ
W
W

eW
tt

→

→
→
→
→
→
→
→

νν
ττ
μμ

τν
μν
ν

• MC events are normalized to 
luminosity

• LO (Pythia) cross-sections are 
corrected by a k-factor

• Number of QCD h.f. events 
(passing basic selection) are 
normalized to data

• Due to large cross-section, only 
heavy flavor QCD events are 
simulated

• MC simulation and data can 
be compared ONLY in h.f. 
events → requires b-tagging
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Negative tag (wrong side)Positive tag (right side)

Interaction point
(primary vertex) Lxy > 0 2nd vertex Lxy < 0

2nd vertex Interaction point

• b, c, and light quark jet content depends on the cut on LXY / σXY  

• Signal events have two b-jets

• Events are classified by having one (exclusive single) or two (double) tags
• Single tag: contains more mistag and charm jets
• Double tag: purer in b, but lacks in statistics, 

has lower signal acceptance

• Negative tags are caused by the limited 
resolution in the tracking

• Mistag events estimated from the data

• SecVtx tagging algorithm takes 
advantage of the long b lifetime 

• Heavy flavor measured by counting the 
positive tags

2. High PT b-tagging at CDF
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B-Tag Efficiency Light quark mistag rate(Positive Tag) (Negative Tag)

• Currently two operation points were considered: tight and loose tag selection

• New taggers being developed using 
Neural Network trained to discriminate 
b-, c- and light quark jets

2. b-tagging at CDF



December 12, 2006 Fermi National Accelerator Laboratory 25

• Simulating Tags

• Only events with taggable objects (b, c, or tau) are simulated

• Positive tag assumes a b- or c-quark in the 0.4 radian cone of the tagged jet 
(avoid double counting)

• Uncertainties in tagging efficiency scale factor 8% or 16% for single and 
double tagged events

• Mistags estimated from the data

• Calculating the rate of the negative tags

• Scaling it by an asymmetry factor
(Ratio between the positive and negative tag-rates for light flavor jets; needed 
to account for the decays of the long lived hadrons)

• Uncertainties from Mistag matrix (statistical 1%-5% and systematic ~17%)

2. Heavy Flavor Background Simulation and Mistag Estimation
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Extended Signal Region
• Veto events with leptons

• Missing ET and 2nd leading jet are not 
parallel

• Cut optimization is performed in this 
region based on Monte Carlo simulation 
before looking at the real data

Control Region 1 – QCD
• Veto events with identified leptons

• Require MET and 2nd leading jet to be 
parallel

Control Region 2 – EWK
• Require 1 identified lepton (electron or 

isolated track

• Missing ET and 2nd leading jets are not 
parallel

For h.f. events passing basic selection:

3. Analysis Regions



December 12, 2006 Fermi National Accelerator Laboratory 27

Control Region 1:

• QCD multi-jet is the dominant process

• MET is due to the mismeasurement of the jets

QCD event topology:
• Jets are back-to-back
• “Missing ET“ points along the 2nd jet

2nd jet

Fake Missing ET

1st jet

~180o

A dijet QCD event:

• b-production cross-section not well 
predicted

• QCD events were normalized to data 
after basic selection: Normalization is 
confirmed

3. Control Region 1
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3. Control Region 1 : ET simulation
• All background processes are simulated

• better understanding of correlation between MET and event kinematics
• allowing for better signal selection (using ANN in progress)

• The detector simulation reproduces well the “fake” missing ET

“fake” MET in QCD events 
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3. Control Region 2

• Single tag: all background processes are tested

• Double tag: dominated by top

• Overall normalization is confirmed
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3. Control Region 2 : ET simulation
• Missing ET is due to mismeasured/undetected leptons and jets

• The detector simulation reproduces well the missing ET
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4048297413020Observed

44.5 ± 2.3 ± 6.9416 ± 11 ± 51952 ± 22 ± 78
12953 ±

99 ± 1208

Total 
Predicted

0.86 ± 0.08 ±
0.18

12.6 ± 0.5 ± 1.9
0.03 ± 0.02 ±

0.006
0.9 ± 0.1 ± 0.1

Diboson

1.5 ± 0.4 ± 0.316.8 ± 1.3 ± 3.25.3 ± 2 ± 1.222.9 ± 3.9 ± 3.7Z + h.f.

6.8 ± 1.7 ± 1.693 ± 7 ± 190.8 ± 0.6 ± 0.210.7 ± 2.0 ± 1.4W + h.f.

25.6 ± 0.3 ± 5.2100.2 ± 0.9 ± 14.20.7 ± 0.07 ± 0.133.8 ± 0.2 ± 0.5Top

7.0 ± 0.3 ± 1.2135 ± 1.6 ± 23257 ± 2 ± 443081 ± 10 ± 524Mistag

2.7 ± 1.3 ± 1.458 ± 8 ± 30688 ± 21 ± 649833 ± 99 ± 1087QCD h.f.

2 TagsExclusive 1 Tag2 TagsExclusive 1 Tag

EWK Control Region 
(CR 2)

QCD Control 
Region (CR 1)

• First error is systematic, second is statistical

Predicted and Observed Events in the Control Regions
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4. Signal Selection

• Good agreement between Data and Monte Carlo simulation in the control regions

• Perform selection cut optimization in the Signal Region using the simulation

• Current selection

– Simple orthogonal cuts

– Only appropriate because of poor statistics in the Monte Carlo

• New selection being developed

– Using Artificial Neural Net

– Possible with improved Monte Carlo statistics produced this year

– Developing an advanced selection technique based on Neural Networks
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• Dijet mass is used to extract the limit

• Average mass is lower than generated 
Higgs mass
mH=120 GeV → 101 GeV ± 19 GeV

• Dijet mass resolution is ~19 %

• Actual dijet mass resolution can be 
tested in Z → bb decays

• Improving dijet mass reconstruction is 
one of the major efforts at CDF Invariant mass (GeV)
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4. Higgs Invariant Mass

Dijet invariant mass in Higgs 
signal simulation
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Events are classified in two sets with one or two identified heavy flavor jets after passing 
the optimized cuts:

Single Tag Double Tag

GeVJetET
st 601 >

45.0/ >/ TT HH
( ) 8.0,1 >/Δ T

st EJetϕ
GeVET 75>/

, ,

,

5. Signal Region

Signal acceptance
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95% C.L. limit/SM cross-section set in the ZH and WH samples separately at 
each Higgs mass, and combined:

• Improvements lead to effective luminosity gain of (S/√B)2=6.3 with respect to last year 
analysis (L ~ 300 pb-1)

• Improved lepton veto
• Separate single and double b-tags
• Include WH as signal
• Use fit to dijet mass spectrum

22.822.641.550.0130
21.420.039.240.5125
15.616.835.131.7120
16.015.434.028.4115
17.814.934.825.5110

Combined Obs.Combined Exp.WH  Exp.ZH  Exp.Higgs mass (GeV)

5. Results

• Using Neural Net selection is the last improvement planned for the 1 fb-1 publication
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The expected and observed limits in the Missing ET + b-jet analysis

• Observed and expected limits are 
consistent

• Largest systematic uncertainties

• Correlated:
• Jet energy scale 3%-20%
• Luminosity 6%
• Trigger efficiency 3%
• b-tag efficiency 8% or 16%

• Uncorrelated:
• Cross-sections 12%
• Lepton identification 2%
• Mistag asymmetry 17%
• MC statistics 3%-44%

5. The 95% C.L. limits
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Candidate Event

Data event from Signal Region
• Passed all selection cuts
• Candidate in the 80-120 GeV mass 
window
Double-tagged event

Di-jet invariant mass = 82 GeV

Leading Jet ET = 100.3 GeV

Second Jet ET = 54.7 GeV

Missing ET =144.8 GeV
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Combined Tevatron Limits

MET+bjets limit
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Summary of Observed Limits at the Tevatron

6.1 pb
(75)

2.2 pb
(27)

ZH -> llbb

2.4 pb
(16)

3.4 pb
(23)

WH -> lνbb

3.4 pb
(41)

Includes WH (miss lep)
(14)

ZH -> ννbb

D0 limit 
(factor above SM)

CDF limit  @ 
MH = 115 GeV

(factor above SM)

Analysis

95% C.L. exclusion limits in the low mass searches at the Tevatron
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• Performed analysis on 0.97 fb-1 data in 2006

• MET + b-jet search is the most sensitive in the low Higgs mass 
region; techniques/tools are still improving

• 95% C.L. cross-section limit is ~16 times over the Standard Model 
expectation

• Inspired a new search using MET + Isolated track + b-jet final 
states

• Motivates Level 2 trigger upgrade for more efficient data taking

• CDF+D0 combined limit is now only ~10 times the SM Higgs 
cross-section in the low mass region

Summary
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Backup Slides
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9.5All combined 
improvement

2.0CDF+DØ combination
4.7Product of above
1.0WH signal in ZH
1.7NN selection
1.0Track-only leptons
1.0Forward leptons
1.1Forward b-tag

1.5Continuous b-tag (NN)
1.7mass resolution

ZH->vvbbImprovement

Luminosity 
equivalent=(S/√B)2

Similar improvements expected in the other 
analyses

• Limit 
∼10 times larger than SM prediction 
at 115 GeV/c2 
∼3 times larger than SM prediction at 
160 GeV/c2

• Will gain in a long term
• Factor ∼ √2 from combination of 
CDF and D0 (note that D0 did no 
update low mass analysis, and CDF 
did not update high mass analysis
• Factor √(L/1 fb-1)  with increasing 
Luminosity

• Still need analysis improvements (see 
table)

• Trigger improvements are critical for the 
Tevatron

Higgs Sensitivity Projections
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• First, we need to make these triggers survive at high luminosities without losing 
sensitivity in the physics searches

• With the L2 upgrade, it would be possible to recalculate Missing ET with a precision 
similar to that at L3 (see rate reduction in plots, below)

- Solves the rate problem without tightening the requirements

- Improves L2 triggering on jets

L2/L3 output rate of the MET35 + 2 Jets trigger
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MET35_&_CJET_&_JET_v9 Cross Section vs. Inst. Lum

L2 output rate of MET35 + 2jets,
L1 Met > 25 GeV

L3 output rate – much lower, after
applying a L3 Met > 35 GeV
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• 1. High missing ET region:
• low efficiency because of incorrect 
L1 met calculation

• 2. Low missing ET region, large 2nd ET
• efficiency loss due to L2 cluster 
merging

• 3. L1 missing ET cut (resolution)
• attempt to correct it (Artur’s talk)

• Require offline selections to satisfy 
two-cluster cut (lower plot)

• 1st ET > 35 GeV
• 2nd ET > 20 GeV
• MET > 40 GeV

• Plot efficiency vs MET and 2nd jet ET
• use it to correct Monte Carlo

Inefficient regions
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1. Incorrect L1 met calculation
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• Where trigger should be 100%, MET fails 
• Select large MET>70 GeV
• 2nd cluster > 20 GeV
• Plot events not passing trigger

• Efficiency loss due to very small L1 met
• Leading jet has a tower >> 127 GeV
• tower ET truncated at 127 GeV
• L1 met changes direction
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2. Jet merging
• When the L2 second cluster fails, the 
leading jets are almost parallel
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• Both leading jets are parallel with the 
leading cluster
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• So the leading jets merge. The third jet 
(if exists) becomes the second cluster

htemp
Entries  101
Mean    0.957
RMS     1.065

 Cluster)nd jet, 2
rd

(3φΔ
0 0.5 1 1.5 2 2.5 3

0

5

10

15

20

25

htemp
Entries  101
Mean    0.957
RMS     1.065

acos(cos(jet.j3Phi-trig.Clu2Phi)) {Clu2Et<20.&&Clu3Et>0.}



December 12, 2006 Fermi National Accelerator Laboratory 47

Solution
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• Avoid merging, require separation between 
jets > 1.0

• 6.4% signal loss before, < 2% after dijet
mass cut (between 75 and 115 GeV)

• Tower saturation does not have simple 
solution

• simulated L1 tower information should 
not be used (cannot discard events)
• present also in MET45 trigger, JET100 
could be an alternative trigger path
• try to estimate systematic uncertainty

• Separation of leading jets in the signal:
htemp
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Top: before, bottom: after jet 
separation, and Max Tower < 127 GeV
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Proposed L1/L2 Missing ET

• A High-pt muon sample was used to 
study the efficiency of the L1 Met cut

• Met was calculated using 
– 125 MeV (blue), 
– 250 MeV (green), 
– 500 MeV (red)

granularities.

• Black graph, the actual L1 Met, agrees 
with the red one which was 
reconstructed with the same precision

– Main differences are in the 
projection along x and y (the real 
L1 Met uses a look-up table), and I 
also ignored possible overflows
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Trigger Efficiency – Level 1
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Trigger Efficiency – Level 3
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• Most of the triggered events are dijet events with fake Missing ET

• After b-tagging, heavy flavor component is dominant
• Use Pythia to simulate it:

• ~ 500 M events represent 1 fb-1 data
• events are b-filtered (6%),
• only events with Missing ET >15 GeV are kept (32%)
• few fb-1 data represents a great computational challenge

• Mistagged light flavor QCD is estimated from the data

• The simulation is normalized so that the sum of that and the estimated mistag
is equal to the data in Control Region 1 with a 50 GeV MET threshold

2nd jet

Fake Missing ET

1st jet

180o

A di-jet QCD event:
QCD events also have a particular topology:
• jets are back-to-back
• Fake missing ET points along the leading jet

2. QCD Heavy Flavor Simulation
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• Reconstuction of Z decaying to 
b-jets
– Measure jet energy scale and 

resolution
– Provides a tool for 

investigating b-jet specific jet 
energy corrections

• Looking for Z in double tagged 
events with 
– no additional jets above 10 

GeV
– Jets are back-to-back 

topology

• 3394±515 Z bb events were 
found in a sample of 85,784 
double-tagged events. (333pb-1)
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4. Z Invariant Mass Reconstruction in b-decays
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Systematic errors in the single-tag events after applying optimized selections
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5. Systematic errors in the Signal Region, =1 Tags
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Systematic errors in the double-tag events after applying optimized selections
• Largest uncertainty from limited Monte Carlo statistics
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5. Systematic errors in the Signal Region, =2 Tags


