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Standard Model
 Describes elementary particles 

and their interactions
• Three generations of 

particles(quarks and leptons)
• Gauge bosons mediate 

interactions
• Strong
• Electromagnetic
• Weak
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QCD theory

electroweak 
theory



Hang Yin

Z boson
 Z boson production at Tevatron

 Z (→ee, µµ) events are often used for detector calibration
 Z are backgrounds for many measurements and searches
 Physics with Z boson

 Make precision measurements of electroweak parameters
 Test high-order QED and QCD corrections 
 Search for physics beyond the SM
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 Coupling of a virtual photon to 
fermions: vector coupling

 Couplings of a Z-boson to fermions: 
vector and axial-vector couplings

Drell-Yan
 Drell-Yan Procedure: annihilation 

of       and the production of di-
lepton or       pair via a Z-boson or 
virtual photon

Feb. 23, 2010 Hang Yin 5



 Forward-backward asymmetry :

The differential cross section: 

Forward-Backward asymmetry
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 The presence of both vector and axial vector couplings gives rise
to non-zero AFB.
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Asymmetry Prediction
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Pure Z exchange  

Primarily pure γ* exchange 

Z/γ* interference 

uu → e+e-
_



 AFB is sensitive to 
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Only depends on 
lepton couplings

Also depends on 
quark couplings



Previous Tevatron AFB results
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CDF RunI 108 pb-1, 
Phys. Rev. Lett. 87, 131802 (2001)

D∅ 1.1 fb-1, 
Phys. Rev. Lett. 101, 191801 (2008)

CDF RunII 72 pb-1, 
Phys. Rev. D 71, 052002 (2005)



 Unfold data         and compare unfolded AFB with theoretical prediction

 Measure Drell-Yan normalized differential cross section:

 Extract              using the        distribution

 Subtract backgrounds and measure        distribution 

Measurement strategy
 Select Z/γ* candidates from data
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 After various Corrections:

 Extract Z to light quark couplings using the unfolded AFB distribution



TEVATRON AND D∅ DETECTOR
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Tevatron
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

 important to measure forward-backward charge asymmetry.
 Known quark incoming direction
 LHC: hard to determine incoming quark direction

TeVSpp 96.1@ =
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5.0  fb-1
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Silicon Microstrip Tracker (SMT)
Central Fiber Tracker (CFT)
2 T magnetic field
Coverage: |η| < 3.0

Uranium Liquid Argon calorimeters
Central (CC) and Endcap (EC) 
Coverage: |η| < 4.2 D∅ detector

Drift chambers and
scintillator counters 
1.8 T toroids
Coverage: |η| < 2.0

Service work:
• Calorimeter calibration
• Electron identification 



EVENT SELECTION
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Event selection
 D∅ RunII, L = 5.0  fb-1

 Primary vertex |Z|< 40 cm 
 Electron selections:

 Very tight electron cuts based on calorimeter parameters
 pT > 25 GeV
 Shower shape cut

 Only look at CC-CC and CC-EC events
 For CC-CC events, require two opposite track matches
 For CC-EC events, require CC electron must have track match(use the 

charge of CC electron to determine forward/backward event)

 Lower EC electron track match efficiency
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InvMass distribution
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D∅ 5.0 fb-1

CCCC
D∅ 5.0 fb-1

CCEC

74 k events 84 k events



Selected data
Mass 

region(GeV)
CC-CC CC-EC

Forward Backward Forward Backward

50 – 60 272 309 53 64

60 – 70 466 707 239 418

70 – 75 409 537 281 489

75 – 81 851 1054 768 1223

81 – 86.5 3309 3519 3760 4178

86.5 – 89.5 6672 6644 8323 7636

89.5 – 92 9323 8807 11123 9558

92 – 97 12138 11041 14278 11365

97 – 105 2861 2182 3698 2155

105 – 115 678 432 1137 400

115 – 130 407 188 766 228

130 – 180 436 151 844 269

180 – 250 137 61 252 73

250 - 500 63 45 84 24
Feb. 23, 2010 Hang Yin 18



Signals and Backgrounds
 Pythia Geant MC samples:
 Z/γ*->ee samples: MZ > 40 GeV
At generate level: applying Z-pT rapidity and Z Mass 

reweighting(NLO)
At reconstructed level: MC tuned to data by applying EM 

smearing, efficiencies scaling

 Backgrounds: Z->ττ, W+X, WW, WZ, γγ, ttbar
Backgrounds determined from MC.
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 QCD  background: jets are misidentified as electrons,  estimated from data

 Shape of QCD background measured from real data:  inverting 
electron shower shape requirement in CC and in EC

 Fraction of QCD background: 
using minimum χ2 fitting 

QCD Multijets background
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Blue: data
Red: MC
Green: QCD

QCDMCdata NNN ×+×= βα



Background contributions
Mass Range(GeV) Z->ττ W+X WW WZ γγ ttbar Multijet Signal

50 – 60 20.0 15.3 4.6 0.3 2.2 2.4 38.7 600.1

60 – 70 55.6 24.1 7.0 0.5 6.5 3.9 106.5 1588.8

70 – 75 28.9 19.7 4.3 0.4 4.0 2.2 69.7 1451.5

75 – 81 19.6 18.3 4.2 0.7 4.3 2.6 85.8 3477.4

81 - 86.5 6.2 25.4 3.5 1.6 5.9 2.2 79.6 14148.1

86.5 - 89.5 1.6 11.4 2.8 3.3 3.5 1.0 40.0 29552.6

89.5 – 92 1.8 12.1 2.2 5.2 1.8 1.2 32.3 38507.8

92 – 97 1.3 19.2 3.7 6.8 6.8 2.0 63.4 48384.1

97 – 105 1.7 28.8 6.7 1.6 7.1 3.2 89.2 10734.7

105 – 115 1.5 25.3 6.1 0.7 8.3 2.8 95.9 2454.7

115 – 130 1.8 32.3 7.6 0.8 8.5 4.5 108.9 1422.4

130 – 180 3.1 50.9 15.5 1.5 16.9 8.0 172.0 1404.2

180 – 250 0.8 17.7 7.0 0.8 8.8 3.4 44.4 437.6

250 – 500 0.2 4.5 2.5 0.3 3.4 1.0 8.9 169.5
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Data and MC comparisons
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Work in Progress, 5.0 fb-1

Also compared other distributions, like: electron-Et, Electron-
η,  vertex, cosϴ* in each mass bins



RESULTS

1. Unfolded AFB measurement
2. Weak Mixing angle measurement
3. Z to light quark couplings measurement
4. Differential cross section measurement
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Unfolding procedure

Unfolding: from reconstruction level to 
particle level
Detector resolution corrections

Acceptance * efficiency corrections

Charge Mis-identification corrections
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Detector resolution unfolding: 
Response Matrices

 Due to the finite detector resolution, events migrate into other mass bins
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 At generate level:            and

 At selected level:             and

Mee

Mee



Acceptance*efficiency unfolding
 Acc*eff for CCCC and CCEC events

 To remove geometric and kinematic cuts effects
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 Measured fQ vs. Mee in analysis

Charge mis-ID correction

 fQ : Charge mis-identification rate
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 For CCCC events, we have

 For CCEC events, we have 
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If  fQ = 50%, cannot 
measure  charge asymmetry



Charge mis-ID rate
• The rate of same-sign events as a function of di-electron invariant mass
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Very few events for Mee > 200 GeV

Mis-ID rate shape determined from MC

MC cannot describe the data for charge mis-
ID rate:

 normalized  MC distribution to data in 
the Z peak region
Use data statistical uncertainty

• Data
• MC

data MC



Source of systematic uncertainties
• Theoretical: PDF, QCD and EW corrections
• Electrons: energy scale, energy smear, difference between forward 

and backward efficiencies, charge mis-identification
• Other: background, Acc*eff, the input of          , the unfolding 

method
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δ AFB δ AFB



Unfolded AFB
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Work in Progress, 5.0 fb-1

<Mee> 
GeV

Predicted AFB Unfolded AFB
PYTHIA ZGRAD2

54.5 -0.293 -0.307 -0.273±0.040±0.018

64.9 -0.426 -0.431 -0.442±0.021±0.016

72.6 -0.449 -0.452 -0.434±0.017±0.022

78.3 -0.354 -0.354 -0.342±0.012±0.014

84.4 -0.174 -0.166 -0.175±0.006±0.012

88.4 -0.033 -0.031 -0.033±0.004±0.006

90.9 0.051 0.052 0.054±0.003±0.004

93.4 0.127 0.129 0.133±0.003±0.006

99.9 0.289 0.296 0.301±0.007±0.013

109.1 0.427 0.429 0.428±0.016±0.016

121.3 0.526 0.530 0.539±0.022±0.017

147.9 0.593 0.603 0.634±0.023±0.014

206.4 0.613 0.600 0.570±0.044±0.016

310.5 0.616 0.615 0.443±0.073±0.006



RESULTS

1. Unfolded AFB measurement
2. Weak Mixing angle measurement
3. Z to light quark couplings measurement
4. Differential cross section measurement
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 Checked the distributions like electron pT,  electron η, Mee,  cosϴ* and Z boson pT 
etc

 Reweight Geant MC generator-level distribution with different sin2 ϴW
eff values (2D 

reweight)  MZ/ϒ*-cosϴ*

Weak mixing angle measurement
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 Pythia samples generated with 40  sin2 ϴW
eff   inputs

 Geant MC files with different input values of sin2 ϴW
eff:



 Measured value

 Using minimum χ2 fitting 
method

 Main systematic uncertainty comes 
from PDFs

 With more data, combined with 
muon channel , Tevatron precision 
will be comparable with  the world-
average.

sin2 ϴW
eff results
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Work on progress, 5.0 fb-1



RESULTS

1. Unfolded AFB measurement
2. Weak Mixing angle measurement
3. Z to light quark couplings measurement
4. Differential cross section measurement

Feb. 23, 2010 Hang Yin 34



How?

• Generator ZGRAD2,  5M events for each points

• Using unfolded AFB to extract couplings

– 16*16 grids with Vu step size of 0.008 and Au step size of 0.03
– 16*16 grids with Vd step size of 0.024 and Ad step size of 0.034

• Fix Z-u(Z-d) quark couplings to SM values for the determination of  
Z-d(Z-u) quark couplings
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Fermion gV gA

u 0.196 0.5

d -0.346 -0.5

e -0.08 -1.0



Z to light quark couplings
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Work in Progress, 5.0 fb-1

Zoomed

Z-u quark couplings Z-d quark couplings

Axial-vector coupling Axial-vector coupling

Vector

Vector



RESULTS

1. Unfolded AFB measurement
2. Weak Mixing angle measurement
3. Z to light quark couplings measurement
4. Differential cross section measurement
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Normalized differential cross section

 Normalized differential cross section:
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Number of selected events

Number of background events

Integrated luminosity

Bin width

Acceptance * efficiency effects



Results
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Work in Progress, 5.0 fb-1



 Measured Drell-Yan normalized differential cross section:
 First measurement in Tevatron Run II

 Measured 
 Precision is better than the uncertainty of LEP(HAD combination) , still 

dominated by statistical uncertainty
 With 8-10  fb-1 combine both electron and muon channel with CDF, the 

expected precision will be comparable with WA

 D∅ RunII 1.1 fb-1 has been published in Phys. Rev. Lett. 101, 191801 (2008)
 D∅ RunII 5.0 fb-1  paper is under review for publication.

Conclusion
 Measured AFB with 5.0  fb-1 data

 Agrees with PYTHIA prediction
 5 times more data than the previous result (D∅, Phys. Rev. Lett. 101, 

191801 (2008)), will be the most precise measurement at the Tevatron. 
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 Measured  Z to light quark couplings 
 Will be world’s most precise measurement of those couplings



BACKUP
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Gamma cross section
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e−

e+ l, q
Ζ/γ*

Al
FB,  ALR (SLD)

l ,q e−

e+ b  c

 bc

Ζ/γ*

Ab,c
FB

u, d u, d

ν ν

Ζ

u, d u, d

ν ν
NuTeV

u, d

u, d e+
Ζ/γ*

This measurement

e−

50<Mee<75 GeV
NF<NB AFB<0

80<Mee<100 GeV
NF≈NB AFB≈0

150<Mee<500 GeV
NF>NB AFB>0



Z
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u/d AFB
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Forward and Backward efficiency
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There is no big difference between forward electron efficiencies and backward 
electron efficiencies 

Will take the difference between forward electron and backward electron efficiencies 
as one of systematic uncertainties.



AFB measurement at LEP and SLD
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Left- and right-handed couplings:     gV = gL+gR,     gA = gL-gR
Fermion asymmetry parameter:        Af = 2gVgA/(g2

V+g2
A) 

At e+e- collider: 
Forward-backward asymmetry: 
Af

FB = (σf
F-σf

B)/(σf
F+σf

B) = 0.75AeAf
Left-right asymmetry:  
ALR = (σL-σR)/(σL+σR) = PeAe
Left-right F/B asymmetry (direct measurement of final-

state coupling) 
ALR

FB = [(σL
F-σR

F)-(σL
B-σR

B))]/[(σL
F+σR

F)+(σL
F+σR

F)] = 
0.75PeAf



Measurement Techniques used at 
SLD and LEP
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Measurement of ALR, AFB
LR, Al

FB at SLD:
Excludes electron mode to avoid the added complexity of 

correcting for t-channel interference
Determination of the beam polarization

Measurement of Al
FB at LEP

Measurement of Pτ (τ polarization) 
 Measurement of Ab

FB, Ac
FB

Use lepton tag: P and PT of leptons can be used to assign a 
probability that the lepton is a b or a c quark

Sign of the lepton tags the quark charge
Measurement of Qhad

FB:
Use momentum-weighted jet charge to tag the quark charge
Relies on MC to determine the relative abundance of the 

different quark species



Collins-Soper frame

proton anti-proton

z axis
θCS

electron

y axis

x axis

Viewed from di-electron rest frame

Z axis defined as the bisector of the proton beam 
momentum and the negative of the anti-proton beam 
momentum in the dilepton rest frame
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• 1
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Closure tests
 Apply same analysis procedure on GEANT MC and compare the 

unfolded AFB with truth
 Three closure tests have been done:
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1. Raw AFB and all corrections measured using the same GEANT MC files



Closure tests(Cont.)
2. Use half of GEANT files to measure raw AFB and other half to 

measure all correction
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3. Randomly flip the charge to make generator level AFB flat and then 
measure AFB and all corrections



MC with 
stw(3σ)

Response 
matrices ……..

Data raw 
AFB

Extract stw

Bias due to the unfolding method
 Use Geant MC to get the response matrices and acc*eff corrections. Those 

corrections depends on the input AFB and may bias the unfolded results.
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 Do an iterative unfolding to remove this bias:
1. Use response matrices measured from a MC sample(with different ) to 

unfold the raw AFB(start with 3σ(3*0.001) away from the measured             )

2. Compare unfolded AFB with AFB generated with difference input           
using  χ2 fitting method to get best 

3. Use corrections measured from a MC sample(with from step 2) to 
unfold the raw AFB

4. Repeat step 1 – 3 , until              is stable



Stw depends on scale
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• Moller scattering

• ν-nucleon scattering

• Atomic parity violation 
in Cesium
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