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Outline I
• Service work

  CLC Senior project leader and pager carrier 
 Testing and installation of the hardware components
  HV CAEN crate maintenance
  Studies on the PMT lifetime
 PMTs gain instability
 Development and implementation of single layer measurement
 Monitoring and support of online luminosity measurement
 Various tests and studies for joint luminosity meetings presentations
 Ace and multiple CO shifts
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Outline II
• Research

 Search for non-standard model tt resonance states in the all jets
 FlaME implementation to all hadronic Mtt search
 Transfer functions optimization 
 QCD background modeling in all hadronic channel. Mtt and Mass
 Incorporation of events with extra jets
 Neural net event selection optimization
 FlaME implementation to event selection: Mtt and Mass
 Studies on combinatorial reweighing, using FlaME, JetProb.
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Tevatron

• Operating since 1985
• Highest energy collider
• Collides
• 36x36 bunches
• Average xsing rate ≈ 1.7MHz
• Radius ≈ 1km
• Lints ≈ 3.5·1032cm-2s-1

• Particles are accelerated in 5 
steps

• 7 fb-1 already collected. 
• 12 fb-1, by the end of Run II

pp
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CDF
 10 meters high, 27 meters long and weighs over 5000 ton
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CDF
• General purpose detector
• Need the full detector for my 

analyses:
 Tracking
 Calorimeter system
 Muon system
 Luminosity counter

• Tracking:
 Silicon

– L00+SVX+ISL
– Precise vertex tracking
– R≈1.6-28cm
– |η|<2.0/4.0

 COT
– Drift chamber with 8 layers
– Tracking in central region
– R≈44-132cm
– |η|<1.0

• Calorimeter system
 Central, wall and plug
 Electron/photon/jet/ΣET energies
 Overall |η|<3.6
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CLC
Cerenkov Luminosity Counters
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Zero crossing method

8

We need to calculate # of 
interactions per bunch crossing

Zero bunch crossing probability approximately

In reality, N # of interactions will not 
be detected independently

Trough CDF simulation, we calculate all the 
acceptances above, using CLC response, i.e. 
SPP values for each channel
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Effective xsection changes
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PMT: SPP, Pedestal
Qie_95
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Mean    254.4
RMS     143.7
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PMT lifetime
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Lower gain period

store #
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New HV

From stores ~6500(mid Oct 
2008), we start gradually 
underestimate acceptance

It directly translates into 
luminosity overestimation

Last store with new HV 
settings shows only 1.5% 
difference
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CDF/D0

2005 2007
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Amplitude vs time
Here we plot:
 Y-axis: <ADC>
 X-axis: Run Section
<ADC> expected to fall smoothly during 
data taking

Here we plot:
 Y-axis: time
 X-axis: Chi2 of the fit
Chi2 ~1 for a stable channel
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Defective base

• Traced down the instability in luminosity measurement to bad 
soldering in PMT bases

• Replaced 44(~70%) bases. 
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CDF/D0

Lower gain 
period

Recent admem 
failures
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Analysis

pp→ X0 → t t
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Why and How?

• Goal is to test     production for possible new sources 
such as a narrow resonance

 Top is very heavy, maybe indication of coupling to new physics
 Top is a young particle
 Various theoretical models predict it

• Search technique: 
 Mtt spectrum is reconstructed, using FlaME
 Search for a peak in Mtt spectrum

– Understand SM fluctuation probabilities
– Calculate UL(Upper Limits)
– Compare data with our expectations(SM or with new physics)

tt̄
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Where?
• First Mtt analyses in All Hadronic channel

Disadvantages
– Large QCD background

» Controlled with good event selection
– More combinations

Advantages
– Highest branching ratio

»  Most      events are here
– No missing information like neutrino

» Better signal templates
 Future

– Combined result with lepton+jets channel
» Higher sensitivity

– Cross-check for a possible discovery

tt̄
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Top pair production

• Dilepton:
 BR = 5% (ee/eµ/µµ) - cleanest sample, lowest statistics

• Lepton+Jets:
 BR = 29%(e/µ+jets only) - golden channel with high statistics and 

reasonable S/B

• All-hadronic:
 BR = 46% - highest statistics but large background
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Previous L+jets result
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FlaME (Florida Matrix Element)

 We calculate the a priori probability density for an event to be the 
result of Standard Model      production and decay

P( j |Mtop ) =
1

σ (Mtop )ε(Mtop )Ncombi
Σ
combi

dzb∫ dzb f (za ) f (zb )dσ (Mtop , p)TF( j | p)PT (p)
tt̄

ρ(x | j) = 1
σ (Mtop )ε(Mtop )Ncombi

Σ
combi

dzb∫ dzb f (za ) f (zb )dσ (Mtop , p)TF( j | p)PT (p)δ (x − Mtt (p))

  To calculate the Mtt probability density, we modify the integral above:

 As Mtt estimator we use average of this distribution:

Mtt =< ρ(x | j) >
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MC/Data Samples

• Signal samples:
Pythia generated narrow resonant     samples 

with masses 450, 500 ... 900 GeV
• Background Samples:

SM     MC sample 
QCD

– Data driven

tt̄

tt̄

]
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Trigger & Prerequisites

• Multijet Trigger
 L1: ≥ 1 tower with ET≥10 GeV

 L2: ≥ 4 clusters with ET
cl≥15 GeV, ΣET≥125 GeV 

 L3: Njet≥4, with ET
jet≥10 GeV

– σ ≈ 14 nb, ~85% all hadronic efficiency 

• Prerequisites
 Good run list
 Vertex: |z|<60cm & |z-zp|<5cm
 Missing Et Significance: < 3 (GeV)1/2

 Tight lepton veto
  6,7 tight jets - ET

jet ≥ 15GeV, |η|<2.0

• After prerequisites we have     /QCD~ 1/1000!tt̄
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Neural Net Idea
• Neural net event selection:

 Uses a Root class TMultiLayerPerceptron
 11 inputs, 2 hidden layers with 20/10 nodes and 1 output

• SumEt - total transverse energy

• SumEt3 - sub-leading transverse energy

• C - centrality:  

• A - aplanarity: 3/2*(smallest eigenvalue) of 

• E*N - geom average of transverse energy of the N-(2 leading jets)

• E*T1 - transverse energy of the leading jet

• M2j
min - the minimum dijet mass

• M2j
max - the maximum dijet mass

• M3j
min - the minimum trijet mass

• M3j
max - the maximum trijet mass

• FlaME variable, ∑-Log(P( Mtop=155,160…195GeV))

ET − ET1∑ − ET 2

 
Mab = Pa

jPb
j

j∑ /
r
P j

j∑
ET / ŝ∑

CDF Run II MC preliminary
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QCD background
• We build tag matrix from events from 4,5 jet events.
• Each element in the matrix defined as:

 

• The probability to single/double tag an event:

• We weigh each event in pre-tagged data sample to get the prediction for 
1, 2 tagged events

• Finally, we define several control region and test our modeling with 
observation

• For all control regions we get a very good agreement
• Biggest impact on final result comes from possible signal contamination, 

using this procedure
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Crosscheck with data
0.75<NNetOut<0.93.

CDF Run 2 preliminary
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Crosscheck with data
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Limit Setting Methodology
• Template event weighting

 NX0: based on assumed cross-section and acceptance
 Ntt: based on theoretical cross-section and acceptance
 NQCD: Balance from data

Ncdf
tot = Ldt ⋅ (σ X 0AX 0 +σ tt Att )∫ + NQCD

• Likelihood
 NX0, Ntt, NQCD are used to compute the expected number of 

events in mass bin “i”:
µ(i) = NX 0TX 0 (i) + NttTtt (i) + NQCDTQCD (i)

 Given the observed number of events n(i) and expected µ(i) in 
bin “i”, the likelihood is equal to:

 

L(σ X 0 ,
r
ν | rn) = e−µi∏

µi
ni

ni !
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Posterior density function
• Acceptance uncertainties accounting

• We integrate over the nuisance parameters, uncertainties for:
 Signal acceptance
 Background acceptance
 Background cross-section

 
p(σ X 0 ,

rn) = d
r
ν ⋅ L(σ X 0 ,

r
ν | rn) ⋅π (σ , rν )∫

• Given p(σ|n) we define:
  σX0 - max of PDF

 95% confidence level upper 

limit(UL) 

 Values are calculated as 

median after 1000 PE’s

 

1
Area

p(σ | rn)dσ = 0.95
0

UL

∫
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Systematics

• To consider systematics, 
which both affect shape 
and acceptances, we:

• Consider the shift on 
cross-section by:

• Running PE from shifted 
templates and fit them 
with nominal ones

• We considered 
systematics due to JES, 
ISR/FSR. PDF found to 
be negligible
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Applying systematics
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Data/BG prediction
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Upper Limits
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Conclusions&Plans

• Maintenance and support for CLC
• First search for ttbar resonance in all jets final state

 No excess found in 2.8/fb of CDF data
 We set observed upper limit on leptophobic Z’ mass up to 805 GeV

• Plans:
 Graduate in December 2009
  Join the strong group with

» Hardware projects
» Challenging topics in search analysis
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Backup slides
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Signal contamination

• Signal contribution to QCD shape will be treated as following:

• In the end, it decreases signal acceptances by the values we get from TRM, 
which is about 1-1.5%

• It will obviously result in the worse sensitivity.

2.

7.1.1 Template weighting

Equation 4 shows that in order to build the likelihood we need to know the number of
background events Nbj for each background. Since the cross sections for the QCD process
is unknown we decided to estimate the number of events from QCD as the balance to the
total number of observed events in CDF after subtracting the expected number of signal
and SMtt̄ events (which can be calculated since the cross sections and acceptances are
known).
In the end the weights for each samples are given in order to satisfy:

NTOT
CDF =

∫
Ldt · (σsεs + σtt̄εtt̄) + QCDcont (5)

7.1.2 Z’ contamination in QCD template

From Equtaion 4 we have, number of events in bin “i”:

µ = σsAsTs + σttAttTtt + Npure
QCDT pure

QCD

Npure
QCDT pure

QCD = N cont
QCDT cont

QCD − σsAcont
s T cont

s − σttAcont
tt T cont

tt

Comparing signal templates of predicted and observed values we can assume:

Ts = T cont
s

So, finally we get:

µ = σs(As − Acont
s )Ts + σttAttTtt + N cont

QCDT cont
QCD − σttAcont

tt T cont
tt

7.2 Data structure and algorithm

The functions obtained from the fits are then used to generate smooth templates which
are fed into the upper limit and cross section calculation algorithm. The background
information is normalized and saved in an array of objects, each element containing: a
template histogram, expected number of events per each background, uncertainty on the
number of events. Signal information is saved in a similar object with structure: template
histogram, effective acceptance As = εs ·

∫
L dt, uncertainty on the acceptance.

Thus the algorithm implementation allows us to easily:

2This set of the fitting functions guarantees a fit with χ2 probability always above 20%

20
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Simplifications

• To calculate that probability we need to compute 28 
integrals:

Pt and Pz of incoming partons
4-momenta of 6 final partons

• To reduce CPU time, we made some assumptions:
Pt of the incoming partons is 0. -2 integrals
All quarks except top are massless. -8 integrals
Partons and jets have the same direction. -12 integrals
W’s and top’s are on shell. -4 integrals

• Only 2 integrals in total. We’ll do more in the future.
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Improvements

• Some of the improvements made:
Added events with 7 jets, considering last 3 jets in Et as 

extra jets from radiation
–  results in better signal acceptance

Used refined binning for transfer functions, both in Eta in 
Et

– results in better signal templates

• Both improvements should result in better sensitivity
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Details

Integration 
over PDF’s

Normalization 
factor

Jet-parton 
assignments

Differential 
xsection

Transfer 
functions

Pt of ttbar 
system 

P( j |Mtop ) =
1

σ (Mtop )ε(Mtop )Ncombi
Σ
combi

dzb∫ dzb f (za ) f (zb )dσ (Mtop , p)TF( j | p)PT (p)



Fnal, Dec 2009 41

dσ calculation 

• We use uubar --> 6 exact tree level ME
• Spin-correlations are included
• We compute the amplitudes directly using explicit 

Dirac matrices and spinors 
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Transfer functions
• From MC calculate the probability density function TF(Ej|Ep)

 ξ = 1 -Ejet / Eparton
• Use differnet TFʼs for different regions in η, energy, quark types

Example of b-quark 
Transfer Function for 
1.3≤|η| ≤ 2 
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Prereqs effects
• Total efficiencies:εtt=42%, ε500=43%, ε700=36%, ε900=28%
• Where do we lose events for high masses?

 More interesting: Why?

 Most of the events are 
lost on L2, which requires 
at least 4 clusters

 For higher resonance 
masses, decay products 
are boosted more=> 
higher chance to merge in 
one cluster

 See backup slides for 
details
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Support for L2 issue
Blue 500 GeV resonance 
Red 900 GeV resonance. 
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L2 continued
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L2 final

-Event is passed

-Event is rejected
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FlaME Variable
FlaME gives the probability of 
an event to come from SM ttbar. 
Let’s take advantage of it!

Here we plot -log(P) vs top 
mass for various samples. As 
you see there is a difference 
between ttbar and QCD

Lets calculate -log(P) for 9 mass 
points: 155,160…195GeV.
Decided to use their sum
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…and their distributions
Red lines correspond to data. 
Black lines correspond to SMtt
Blue lines correspond to SMtt matched only
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…and their distributions
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Plug&Play
Black with FlaME, Red without FlaME, green kin. ev. sel.


